Dr. Donald Halseth, Coordinator Department of Horticulture Cornell University Ithaca, New York 14853

2008 USPB/SFA Chip Variety Trials

Sponsored by The United States Potato Board & The Snack Food Association

Cooperators:

Dr. Nick David, North Dakota State University, Fargo, ND
Dr. Chad Hutchinson, University of Florida, Hastings, FL
Mr. Chuck Kostichka, University of Wisconsin, Hancock, WI
Dr. William Lamont, Pennsylvania State University, University Park, PA
Mr. Chris Long, Michigan State University, East Lansing, MI
Mr. John Norgaard, Black Gold Farms, Arbyrd, MO
Mr. Joe Nunez, University of California Coop. Extension, Bakersfield, CA
Mr. Ed Plissey, Bio-Ag Research Associates Inc., Machiasport, ME
Dr. Jeff Stark, University of Idaho, Aberdeen, ID
Dr. Craig Yencho, North Carolina State University, Raleigh, NC

TABLE OF CONTENTS

Introduc	tion	Page 3
Table 1.	Seed Acreage of Current Chipping Varieties	3
Procedu	re	4
Overview	W	4
Table 2.	Characteristics of the 2008 USPB-SFA Chip Trial Entries	5
Regional	Trial Reports:	
-	California	9
	Florida	12
	Idaho	16
	Maine	21
	Michigan	25
	Missouri	33
	North Carolina	37
	Pennsylvania	43
	Red River Valley	45
	Wisconsin	4 3 4 7
Table 3.	Summary of performance of fourteen lines in 2008 trials	50
Table 4.	Three-year averages for Beacon Chipper (2006-2008)	58
Table 5.	Three-year averages for CO95051-7W (2006-2008)	59
Table 6.	Three-year averages for MSJ147-1 (2006-2008)	60
Table 7.	Three-year averages for W2324-1 (2006-2008)	61
Out-of-S	torage Evaluations from 2007 and 2008 trials:	
	Idaho	62
	Maine	63
	Michigan	65
	Pennsylvania	87
	Red River Valley	88
	Wisconsin	99
Table 8.	Chip trial entry summary (1985-2008)	102

2008 USPB/SFA Potato Chip Trial Results

Dr. Donald Halseth - Coordinator Cornell University, Ithaca, NY

INTRODUCTION

The search for new and improved potato varieties is an ongoing and challenging task. During 2002 the United States Potato Board joined with the Snack Food Association in sponsorship of these chip variety trials, which were initiated by the SFA in 1985. The ten trial locations in 2008 were California, Florida, Idaho, Maine, Michigan, Missouri, North Carolina, Pennsylvania, the Red River Valley, and Wisconsin.

This report is divided into two sections. The first section presents the variety performance data for the 2008 growing and harvest season at each of ten state trial locations. The second section consists of the chipping data obtained from storage samples collected during the harvest of the 2007 trials in five states which were held in storage into 2008 for out-of-storage information. This section includes extensive chipping and sugar data from large long-term cold storage temperature research conducted by Chris Long of Michigan Sate University, Duane Preston and Nick David, UMN/NDSU, and Chuck Kostichka, University of Wisconsin. The USPB-SFA Potato Technology Committee has thoroughly discussed the need and value of storage data and this report represents the fifth annual report to include this data.

Variety	Year Released	2003	2004	2005	2006	2007	2008
1. Atlantic	1976	4351	3635	2592	2693	2806	2604
2. Snowden	1990	2597	1627	1664	1847	1794	1477
3. Dakota Pearl	1999	1749	1868	1348	1388	1194	992
4. Reba	1992	981	898	808	764	828	853
5. Pike	1995	1291	883	878	730	669	613
6. Megachip	2008	n/a	19	50	134	279	361
7. Ivory Crisp	2001	214	187	207	272	326	331
8. Chipeta	1993	550	356	260	390	348	323
9. Dakota Crisp	2005	n/a	89	102	161	218	316
10. Marcy	2003	94	187	262	320	319	314
11. Andover	1995	392	393	399	382	364	282
12. Monona	1964	495	586	333	518	243	256
13. NorValley	1996	1344	475	455	453	361	255
14. Norchip	1968	73	52	50	33	11	102
15. Harley Blackwell	2003	n/a	71	160	174	105	87
16. Dakota Diamond	2005	n/a	0.5	5.9	31	232	84

Table 1. TRENDS IN THE SEED ACREAGE OF CURRENT CHIPPING VARIETIES (Plus Breeding Lines in USPB/SFA Chip Trials)

Variety	Year Released	2003	2004	2005	2006	2007	2008
17. Monticello	Keleaseu	8.8	12	20	43	59	78
18. Beacon Chipper	2005	n/a	n/a	n/a	10	25	62
19. Kalkaska	2008	n/a	n/a	n/a	1.1	10.5	21
20. White Pearl		n/a	18	10.5	27	25	19
21. CO96141-4W		n/a	n/a	n/a	n/a	1.2	6.4
22. NY138		n/a	n/a	n/a	n/a	n/a	4.0
23. CO95051-7W		n/a	n/a	n/a	n/a	0.7	2.3
24. MSJ147-1		n/a	n/a	n/a	n/a	4.2	1.9
25. W2133-1		n/a	n/a	n/a	n/a	n/a	1.3
26. CO97065-7W		n/a	n/a	n/a	n/a	1.0	0.5
27. NY139		n/a	n/a	n/a	n/a	n/a	0.5
28. CO97043-14W		n/a	n/a	n/a	n/a	n/a	0.2

Acreage data obtained from the PAA seed certification section.

PROCEDURE

Trial entries are selected for three years of USPB-SFA sponsored chip trials from candidates suggested by University and USDA potato breeders who have been strong collaborators in this project. The fourteen advanced breeding lines and newly released varieties evaluated in 2008 were AF2291-10, Beacon Chipper, CO95051-7W, CO96141-4W, CO97043-14W, CO97065-7W, MSJ036-A (recently named Kalkaska), MSJ147-1, ND7519-1, NY138, NY139, W2310-3, W2324-1, and W2717-5 (see Table 2 for descriptions), which were compared with the chip industry standards Atlantic and Snowden. Trial coordinators established trials in ten states with grower or research farm plots where entries were grown using standard cultural practices. Observation on emergence, growth characteristics and maturity are made during the growing season. Yield, tuber size distribution, external and internal defects, specific gravity and other plant and tuber characteristics were evaluated. Storage samples were held in grower storages and university facilities and chip processors participated in chipping evaluations from various temperature and storage durations.

OVERVIEW

It is important to look at the performance of the individual entries at each location because of the variations in soil types, weather, growing conditions and crop management. State reports in pages x-xx show the yield, percent size distribution, and specific gravity data obtained at each of the ten regional locations. Table 3 (pages xx-xx) summarizes the overall average yield, percent size distribution and specific gravity for each of fourteen clones grown in the ten regional trial sites in 2008. The variety Beacon Chipper and three breeding lines, CO95051-7W, MSJ147-1, and W2324-1, have completed three years of trials from 2006 through 2008 and will be replaced with new entries in 2009. Their three year summary data are presented in Tables 4, 5, 6 and 7 (pages w,x,y, and z respectively). These data tables provide both annual and three-year averages for each regional location and reflect the stable or variable performance of these four entries over eleven locations (TX dropped out after 2007, and CA and MO were added in 2008).

BEACON CHIPPER – has been evaluated buy Michigan State University. In 28 trial sites during 2006-08 (see Table 4), this clone averages a marketable yield of 297 cwt/acre (96% of Atlantic's marketable yield) and a total yield of 339 cwt/acre (95% of Atlantic). Beacon Chipper had its highest marketable yield of 585 cwt/acre in the Michigan trial in 2007. It had an average specific gravity of 1.080, which is .008 units below Atlantic. Specific gravity was above 1.080 in 11 of 28 trials. Beacon Chipper averaged an Agtron chip color value of 65.7 (out of the field), 2.8 units above Atlantic. It chips well from 48F and has reconditioned from 6 months storage at 42F in ND trials.

CO95051-7W – was developed by Colorado State University. In 28 trial sites during 2006-08 (see Table 5), this clone averages a marketable yield of 224 cwt/acre (73% of Atlantic's marketable yield) and a total yield of 278 cwt/acre (78% of Atlantic). CO95051-7W had its highest marketable yield of 388 cwt/acre in the Wisconsin trial in 2006. This clone had the lowest average marketable yield over 9 trials in 2006. It had an average specific gravity of 1.082, which is .006 units below Atlantic. Specific gravity was above 1.080 in 12 of 28 trials. CO95051-7W averaged an Agtron chip color value of 64.5 (out of the field), 1.6 units above Atlantic. It had the best chip color from 6 months storage at 42F in ND trials in 2006.

MSJ147-1 – was developed by Michigan State University. In 28 trial sites during 2006-08 (see Table 6), this clone averages a marketable yield of 190 cwt/acre (62% of Atlantic's marketable yield) and a total yield of 269 cwt/acre (76% of Atlantic). MSJ147-1 had its highest marketable yield of 382 cwt/acre in the Wisconsin trial in 2006, but had the lowest average marketable yield over 9 trials in 2007 and 10 trials in 2008. It had an average specific gravity of 1.085, which is .003 units below Atlantic. Specific gravity was above 1.080 in 19 of 28 trials. MSJ147-1 averaged an Agtron chip color value of 63.4 (out of the field), 2.8 units above Atlantic. Best chipper in Wisconsin trials from 45F storage and one of best from 42F in ND trials in 2006.

W2324-1 – was developed by the University of Wisconsin. In 28 trial sites during 2006-08 (see Table 7), this clone averages a marketable yield of 357 cwt/acre (116% of Atlantic's marketable yield) and a total yield of 421 cwt/acre (118% of Atlantic). W2324-1 had its highest marketable yield of 601 cwt/acre in the Idaho trial in 2006. This clone had the highest average marketable yield in all three seasons of testing. It had an average specific gravity of 1.085, which is .003 units below Atlantic. Specific gravity was above 1.080 in 20 of 28 trials. W2342-1 averaged an Agtron chip color value of 63.4 (out of the field), 0.5 units above Atlantic and produces good chip color from 45F storage.

Table 2. Characteristics of the 2008 USPB - SFA Chip Trials Entries									
Advanced									
Seedlings	Characteristics	Seed Provided By							
AF2291-10	Parentage: SA8211-6 x EB8109-1. Mid-season maturity, round tubers, some misshapen tubers, with medium yield potential. Moderate to good resistance to internal heat necrosis, early blight and common scab. High specific gravity, chips	Dr. Greg Porter University of Maine Orono, ME							
Year 1	from field and warm storage (50F), not a cold storage chipper.								

Beacon Chipper <i>Year 3</i>	Unknown parentage. A mid-season maturity, round tubers with modest specific gravity, but high yield potential. Best yields in 2007 were in Idaho, North Carolina and Wisconsin. Verticillium and scab susceptible. While not a long-term cold storage chipper, it had the best chip color at 6 months at 48F in the 2006 RRV trial and chipped better than Atlantic at four months from 50F in the 2007 RRV trial.	Dr. Dave Douches Michigan State Univ. East Lansing, MI
CO95051-7W Year 3	A selection from a cross between AC88456-6W and BC0894-2W. Mid-season maturity, round tuber shape with a high percent of No. 1 grade, good specific gravity (.006 units below Atlantic) and medium yield potential. Low external and internal defects, short dormancy. In the 2006 RRV trial it had the best chip color at 6 months at 38F, and responded well to reconditioning. Chip color was good from 45F at 3 and 4 months storage of the 2007 RRV trial.	Dr. David Holm Colorado State Univ. Center, CO
CO96141-4W Year 2	A selection made in 1996 from a cross between BC0894-2W and AC87340-2W. Mid-season maturity, blocky tuber shape, lower specific gravity (.012 points below Atlantic) and moderately high yield potential (96% of Atlantic). Good tuber size, resistant to hollow heart and Blackspot Bruise. In the 2007 RRV trial it chipped well from the field and from 4 months storage at 50F.	Dr. David Holm Colorado State Univ. Center, CO
CO97043-14W Year 1	Parentage: AC91817-5W x AC87340-2W. Mid- season maturity, round tubers, low levels of external and internal defects, with relatively good yield (86% of Atlantics marketable yield) and moderate specific gravity (averaged 1.080) in 2008 trials. Medium-long tuber dormancy, blackspot resistant, and few defects. Good out of field chip color and some potential to recondition out of 40F.	Dr. David Holm Colorado State Univ. Center, CO
CO97065-7W Year 1	Parentage: AC92513-3 x Chipeta. Early to mid- season maturity, round tubers, low levels of external and internal defects. Averaged 264 cwt/acre marketable yield (74% of Atlantic) and had a specific gravity of 1.085 (.005 units below Atlantic) in ten trials in 2008. Long tuber dormancy, blackspot resistant, and some potential to recondition out of 40F.	Dr. David Holm Colorado State Univ. Center, CO

MSJ036-A Kalkaska Year 1	Parentage: B1254-1 x S440. Breeding line MSJ036-A has been named Kalkaska. Late maturity, excellent round tuber shape, good scab resistance, moderate specific gravity (averaged 1.084), but relatively good yield potential (averaged 317 cwt/a marketable yield). Need to watch sugar levels at early harvest.	Dr. Dave Douches Michigan State Univ. East Lansing, MI
MSJ147-1 Year 3	A selection from a cross between NorValley and S440. Mid-season maturity, uniform blocky tuber shape, sizes early, and high specific gravity. Lowest average marketable yield over 9 trials in 2007 and 10 trials in 2008. A long-term storage chipper, which chips from 45F storage. It had the best chip color in Florida, Michigan, Idaho, RRV and Wisconsin trials in 2006 and/or 2007.	Dr. Dave Douches Michigan State Univ. East Lansing, MI
ND7519-1 Year 1	Mid-season maturity, good specific gravity (similar to Atlantic), moderate yield potential, and prone to hollow heart and brown center. In the first year of USPB-SFA chip trials it averaged 288 cwt/acre marketable yield (81% of Atlantic) and a specific gravity of 1.089 (.001 below Atlantic).	Dr. Susie Thompson ND StateUniv. Fargo, ND
NY138 Year 1	Parentage: Marcy x NY115. Late maturity, round tubers, few external defects, less blackspot than Snowden, moderate scab resistance, resistant to race Ro1 of golden nematode, long tuber dormancy. Medium yield potential, lower specific gravity range, but chips from 44F.	Dr. Walter De Jong Cornell University Ithaca, NY
NY139 Year 1	Parentage: NY120 x NY115. Medium-late maturity, round tubers, few external defects, some internal necrosis, good resistance to common scab, resistant to race Ro1 of golden nematode, medium tuber dormancy. Medium yield potential, good specific gravity, can chip from 44F storage.	Dr. Walter De Jong Cornell University Ithaca, NY
W2310-3 Year 1	Parentage: Pike x S440. Late maturity, round tubers of medium size, , medium yield potential, medium to high specific gravity. Good internal quality, low sugars, medium term storability, good chipping ability. Moderate scab susceptibility.	Dr. Jiwan Palta, Felix Navarro and Bryan Bowen University of Wisconsin Rhinelander, WI

W2324-1 Year 3	A selection from a cross between Snowden and RHL166. Late maturity, round uniform tubers, and relatively high specific gravity. In three years of trials it had an average specific gravity of 1.085, which is .003 units below Atlantic. Specific gravity was above 1.080 in 20 of 28 trials. This clone had the highest average marketable yield in all three seasons of USPB- SFA testing. Strong vigor and large vine type. Some hollow heart in large tubers and moderate scab susceptibility. Chip color variable, ranging from poor to excellent, depending upon the trial site.	Dr. Jiwan Palta, Felix Navarro and Bryan Bowen University of Wisconsin Rhinelander, WI
W2717-5 Year 1	Parentage: S440 x ND3828-15. Late maturity, round tubers of medium size, medium yield potential, medium to high specific gravity. Good internal quality, low sugars, medium term storability, good chipping ability. Moderate scab susceptibility.	Dr. Jiwan Palta, Felix Navarro and Bryan Bowen University of Wisconsin
		Rhinelander, WI

California Regional Trial

Project Leader:

Joe Nunez UC Cooperative Extension 1031 So. Mount Vernon Ave. Bakersfield, CA 93307

Cooperators:

Dennis Johnston
Johnston Farms
P. O. Box 65
Edison, CA 93220

Jed DuBose UC Cooperative Extension 1031 So. Mount Vernon Ave Bakersfield, CA 93307

2008 Variety Entries:

1. AF2291-10	
2. MJS036-A	
3. MJS147-1	
4. Beacon Chipper	
5. NY138	
6. NY139	
7. W2324-1	

8. W2310-3
 9. W2717-5
 10. ND7519-1
 11. CO95051-7W
 12. CO96141-4W
 13. CO97065-7W
 14. CO97043-14W

Trial Information:

Previous Crop: Potatoes have been grown in this field for at least the past 5 years. Trial Location: Johnston Farms, Edison, CA. Soil Type: Cajon Sand Fertilizer: 300 – 100 – 100 Planting Date: 2/15/08 Vine Kill Date: 5/31/08 (mowed) Harvest Date: 6/9/08 Plant Spacing: Hand Planted at 9 inch spacing Plot Size: 20 ft row x 32 inch bed width, 4 replications Irrigation: Solid set sprinkler, 40ft x 30 ft Pest Management: Standard grower's practice

Procedure

Approximately 20 pound seed potato samples of the Snack Food Association chip trial were received by FedEx during the months of January and February from the chip trial breeders. The seed was held in a warehouse until seed was cut by hand. Twenty seven seed pieces were placed into a small paper bag and held until planted on 2/15/08. The Snack Food Association trial was hosted by Johnston Farms of Edison CA on one of their field sites.

Plots were marked off every 23 feet and the beds were opened up in the middle with a 2 row potato planter. The 27 seed pieces were dropped by hand into the opened beds with a 3 foot buffer between each plot. Once planted, the seed was cover with soil and the beds were reformed with a cultivator. The experimental design was a randomized complete block design.

The field trial received all standard growing practices for fertilization and pest management. There was no significant insect or disease pressure at the field site but it did receive regular preventive fungicide treatments. Weeds were controlled with early season cultivation and use of Eptam herbicide.

The tops were beaten off on 5/31/08 and the plots were harvested on 6/9/08. A single row digger lifted the tubers and dropped them on the ground. The tubers were then picked up by a hand crew and placed into burlap sacks and transported to a nearby shop for grading. The tubers were graded the following day and a 12-15 lb sub-sample taken from each plot. From the sub-samples taken an 8 lb sample from each variety was taken to White Wolf Potato packing shed and specific gravity tests were performed. All data was analyzed using MSTAT-C.

Results

All of the varieties grew well in Kern County with no growth or vigor problems. Disease or insects were not an issue so no observations or comments can be provided on those issues. Some varieties did do better than others however. NY139 and CO96141-4W were the top performers in yield but the vigor was slightly lower for CO96141-4W. Beacon Chipper and NY138 also did very well with excellent yield and vigor. MJS147-1 and W2717-5 were the weakest performers but had good vigor. MJS147-1 had a high percentage of its tubers in the smallest category.

	Yield (d	cwt/acre)		Prece	nt Size D	istribution		-		
ENTRY	US#1	TOTAL	US#1	0-2"	2-3.5"	OVER 3.5"	CULLS	SP GR	% SOLIDS	VIGOR
AF2291-10	254	304	84	15	64	20	2	1.092	23.4	3.25
MJS036-A	208	313	66	32	59	7	2	1.085	21.8	3.00
MSJ147-1	99	245	40	58	36	5	1	1.092	23.4	3.25
BEACON CHIPPER	352	396	89	8	43	46	3	1.081	21.0	3.25
NY138	358	395	91	8	37	54	2	1.082	21.2	4.00
NY139	409	446	92	7	52	39	1	1.089	22.7	3.25
W2324-1	287	393	73	18	49	24	9	1.084	21.6	3.00
W2310-3	281	319	88	10	61	27	2	1.092	23.4	3.00
W2717-5	143	248	58	40	47	10	2	1.09	22.9	3.00
ND7519-1	255	379	67	30	59	9	3	1.083	21.4	3.00
CO95051-7W	251	298	85	15	62	23	1	1.078	20.3	3.00
CO96141-4W	353	411	86	13	60	26	1	1.072	19.0	2.75
CO97065-7W	253	325	78	21	61	17	2	1.086	22.0	3.00
C097043-14W	286	339	84	15	59	25	1	1.083	21.4	3.00

Florida Regional Trial

Local Coordinators:

Dr. Chad Hutchinson University of Florida/IFAS Horticultural Sciences Dept. Hastings, FL 32145-0728

Allison Beyer University of Florida/IFAS Horticultural Sciences Dept. P.O. Box 728 Hastings, FL 32145-0728

Cooperating Grower:

University of Florida/IFAS, Florida Partnership for Water, Agricultural and Community Sustainability at Hastings

Trial Data:	
Planting Site:	University of Florida/IFAS, Florida Partnership for Water, Agricultural and Community Sustainability at Hastings Research and Demonstration Farm
Planting Date:	February 4, 2008
Harvest Date:	May 15, 2008 (101 days)
Growing Conditions:	This growing season was a bit drier than normal, especially in January and May, although we did have one leaching rainfall of 3.17" on 7 March, 2008. Temperature patterns were average, and only two mornings had temperature readings at or below freezing. Overall, yields and quality were average.
Experimental Design:	Each variety/clone was planted in a single 250 ft row as directed by the SFA protocol. Four 20 ft sections of each row were harvested and graded. This was not a randomized and replicated experiment. Only means were calculated.
Row Spacing:	Machine planted. Approx. 8 inches in-row, 40 inches between-rows.
Fertilizer:	Preplant: 714 lb/A of 14-6-12 (100 lbs N/A, 43 lbs P/A, 86 lbs K/A) Sidedress (3/4/08): 714 lb/A of 14-0-12 (100 lbs N/A, 86 lbs K/A) Sidedress after rain (3/11/08): 214 lb/A of 14-0-12 (30 lbs N/A, 26 lbs
K/A)	
Pest Control:	C60 (4 gal/A 1,3-dichloropropene, 60 lbs/A Chloropicrin), pre-plant. Maxim MZ fungicide for potato seed pieces, pre-plant. Aldicarb (Temik, 20 lb/A), at planting. Sencor DF (1 lb/A) and Dual Magnum (1 pt/A), at hilling. Fungicides and Insecticides as needed. IPM program used.
Chip Ratings:	Chips were prepared and rated following the procedures outlined in the Snack Food Association Chipping Potato Handbook (1995). Chip scores are presented in Table 2.

Table 1. Florida Trial 2008: Production statistics for SFA clones.																		
	Tuber Yield			Tuber Yield			Tuber Yield				Size	Class	Distrib	oution ^{3, 1}	⁴ (%)		Class e ⁴ (%)	
	No.1	Total	%	%							, <u> </u>	Specific						
Clone	cwt/ A	cwt/A	No.1 ²	Culls	1	2	3	4	5	2 to 4	3 to 4	Gravity						
Atlantic	285	343	83	3	12	72	12	2	0	86	14	1.088						
Beacon Chipper	218	290	75	2	20	73	3	0	0	76	3	1.089						
Snowden	333	402	83	3	14	78	7	0	0	85	7	1.086						
AF2291-10	219	273	80	4	15	66	16	2	0	84	18	1.091						
CO95051-7W	171	298	57	2	38	58	1	0	0	59	1	1.084						
CO96141-4W	294	358	82	1	15	79	4	1	0	84	5	1.075						
CO97065-7W	242	314	77	1	18	75	2	0	0	77	2	1.088						
CO97043-14W	243	307	79	4	15	75	7	1	0	83	8	1.084						
MSJ036-A	302	361	84	2	14	74	10	1	0	85	11	1.087						
MSJ147-1	108	256	42	1	52	43	0	0	0	43	0	1.091						
ND7519-1	242	330	74	1	22	68	5	1	0	74	6	1.090						
NY138	244	300	81	2	15	65	15	2	0	82	17	1.080						
NY139	214	259	82	4	11	73	11	3	1	87	14	1.083						
W2310-3	199	268	74	3	21	74	1	0.3	0	75	1.3	1.091						
W2324-1	275	314	88	3	8	67	17	6	0	90	23	1.089						
W2717-5	244	312	78	5	16	77	5	0.5	0	83	5.5	1.101						
Average	240	312										1.087						

¹No.1 Yield: marketable yield, size classes 2 to 4

²Percent No. 1: calculated based on weight using the formula, No. 1 Wt / Total Yield Wt

³Size Class Distribution: calculated based on weight using the formula, Class Wt / (Total Yield Wt – Cull Wt). ⁴Size Classes: 1 = 1.5 to 1 7/8", 2 = 1 7/8 to 2.5", 3 = 2.5 to 3.25", 4 = 3.25 to 4", 5 = > 4"; Class size C (<1.5") was recorded and is included in Total Yield but is not shown as a separate size category.

	Plant (Growth (Characte	eristics ¹			Tuber	Characte	eristics ²		
	Percent	Early	Vine	Vine							Chip
Clone	Stand	Vigor	Туре	Maturity	IFC	SC	ST	TS	ED	APP	Rating ³
Atlantic	71	6.3	9-6	7.0	2.0	6.5	5.5	2.5	7.5	6.0	3.9
Beacon Chipper	71	7.0	6-9	7.1	1.0	6.5	5.5	2.5	7.0	5.5	2.9
Snowden	71	7.3	9-6	8.1	1.0	6.0	5.5	2.0	6.0	6.5	3.4
AF2291-10	57	5.0	9-6	7.8	2.0	6.5	6.0	2.5	6.0	5.0	3.6
CO95051-7W	71	5.5	6-9	6.5	2.0	8.0	6.0	2.5	7.5	5.5	4.0
CO96141-4W	74	7.0	6-9	6.6	1.0	7.0	6.5	2.5	8.0	5.0	3.8
CO97065-7W	65	7.0	9-6	6.8	2.0	7.5	5.5	1.5	7.5	6.5	3.5
CO97043-14W	76	6.3	5-8	6.0	2.0	7.0	6.0	2.0	7.5	6.5	3.7
MSJ036-A	58	5.8	9-6	7.1	1.0	6.5	6.0	2.0	7.5	5.5	4.3
MSJ147-1	74	5.0	5-8	7.5	1.0	7.0	6.0	2.5	7.5	5.5	2.6
ND7519-1	58	6.8	6-9	7.0	1.0	6.5	6.0	2.5	7.5	5.5	2.8
NY138	60	6.0	6-9	7.6	3.0	6.5	6.0	2.5	7.0	5.5	3.6
NY139	57	6.3	6-9	7.6	2.0	6.5	6.0	2.5	7.0	5.5	4.8
W2310-3	71	7.0	5-8	7.5	2.0	5.5	5.5	2.5	7.5	5.0	3.5
W2324-1	67	6.3	6-9	7.3	2.0	6.5	5.5	2.5	7.5	6.0	3.4
W2717-5	68	6.3	9-6	7.9	2.0	6.5	5.5	2.5	8.0	5.0	4.8

¹Plant Growth Characteristics.

Percent Stand: based on machine planted 8 inch in-row spacing, 20 ft plot.

Early Vigor: 1 = no emergence, 2 = leaves in rosette, 3 = plants < 2 in., 4 = plants 2 to 4 in., 5 = plants 4 to 6 in., 6 =plants 6 to 8 in., 7 = plants 8 to 10 in., 8 = plants 10 to 12 in., 9 = plants > 12 inches.

Vine Type: 1 = decumbent - poor canopy, 2 = decumbent - fair canopy, 3 = decumbent - good canopy, 4 =spreading - poor canopy, 5 = spreading - fair canopy, 6 = spreading - good canopy, 7 = upright - poor canopy, 8 = upright - fair canopy, 9 = upright - good canopy.

Vine Maturity: 1 = completely dead, 3 = yellow and dying, 5 = moderately senesced, 7 = starting to senesce, 9 =green and vigorous.

²Tuber Characteristics.

Internal Flesh Color (IFC): 1 = white, 2 = cream, 3 = light yellow, 4 = medium yellow, 5 = dark yellow, 6 = pink, 7 = red, 8 = blue, 9 = purple.

Skin Color (SC): 1 = purple, 2 = red, 3 = pink, 4 = dark brown, 5 = brown, 6 = tan, 7 = buff, 8 = white, 9 = cream.

Skin Texture (ST): 1 = partially russet, 2 = heavy russet, 3 = moderate russet, 4 = light russet, 5 = netted, 6 = slightly netted, 7 = moderately smooth, 8 = smooth, 9 = very smooth.

Eye Depth (ED): 1 = very deep, 3 = deep, 5 = intermediate, 7 = shallow, 9 = very shallow

Overall Appearance (APP): 1 = very poor, 3 = poor, 5 = fair, 7 = good, 9 = excellent.

³Chip Rating: Chips were prepared and rated following the procedures outlined in the Snack Food Association Chipping Potato Handbook (1995). They were rated on a 1-9 scale: 1 = outstanding, no blemishes and color variations; 3 = very good, minimal blemishes and color variations; 5 = good, acceptable blemishes and color variations; 7 = marginal acceptance, high levels of blemishes and color variations; 9 = not acceptable, high blemish and color variations.

Table 3.Florida T										
		% Exter	nal Tuber	Defects ¹		_	%	Internal T	uber Defec	rts ²
	Growth	Mis-	Sun-	Rotten	Total					
Clone	Cracks	shapen	burned	& misc.	Culls	-	HH	BR	CRS	IHN
Atlantic	0	1	2	0	3		0	0	0	13
Beacon	0	4	1	0	2		0	0	0	1
Chipper Snowden	0	1	1 2	0	2 3		0 0	0 0	0 0	3
AF2291-10	0	3	2	0	3		0	0	0	3 13
CO95051-7W	0	0	0	0 1	1 2		0	0	0	<u>13</u>
CO96141-4W	0	0	1	0	1		0	0	0	0
CO97065-7W	0	0	0	0	1		0	0	0	1
CO97043-14W	0	1	1	2	4		0	0	0	0
MSJ036-A	0	0	1	0	2		0	0	0	1
MSJ147-1	0	0	0	1	1		0	0	0	1
ND7519-1	0	0	1	0	1		0	0	0	1
NY138	0	0	1	0	2		1	0	0	1
NY139	0	2	2	1	4		0	0	0	1
W2310-3	0	2	0	0	3		0	0	0	4
W2324-1	0	1	0	2	3		0	0	0	4
W2717-5	0	3	1	2	5		1	0	0	8
¹ External Tuber I	Defects: To	tal Culls is	sum of gi	owth crack	s, misshap	ben,	sunburne	d and rot	ten/miscell	aneous.
² Percent Internal corky ringspot, IH				ers showin	g defects; I	HH =	= hollow h	ieart, BR	= brown ro	t, CRS =

Idaho Regional Trial

Local Coordinator: Jeff Stark Peggy Bain Melvin Chappell	University of Idaho Aberdeen R&E Center Aberdeen, Idaho	
<u>Trial Data</u> PLANTED VINE KILLED HARVESTED	2-May-00 3-Sep-00 (Reglone @ 2 pts/A) 24-Sep-00	3
PLOT LENGTH HILL SPACING HILLS PER PLOT REPS	 18' HARVEST LENGTH 10" ROW SPACING 20 ROWS/ PLOT 4 	18' 36" 1
Spray Coupe- May 30 ENVIRONMENTAL FA	0 lb zinc– pre-plant gh water ED/HILLING hanked May 27 D cre July 17 D x (1.5 oz/A), Eptam (6 pint/A)	IRRIGATION Sprinkler 22 " applied

	Yield (cwt/A)		cent Size	%	Specific		
Clone	US No1	Total	<1 ^{7/8} "	1 ^{7/8} -2.5"	2.5-4"	>4"	Unusable	Gravity
ATLANTIC	489	559	4	14	48	26	9	1.096
W2324-1	482	565	6	15	50	20	9	1.095
W2310-3	477	540	6	48	35	6	5	1.096
CO97043-14W	432	492	10	18	52	17	2	1.086
MSJ036-A	413	495	13	33	47	4	3	1.096
NY138	410	470	10	17	63	7	3	1.085
NY139	393	462	12	38	46	2	3	1.095
CO96141-4W	379	439	11	26	50	10	3	1.086
BEACON CHIPPER	373	399	4	17	53	24	2	1.086
CO95051-7W	357	412	12	27	58	2	1	1.100
SNOWDEN	333	449	25	43	28	4	1	1.092
ND7519-1	315	414	19	33	40	3	5	1.095
AF2291-10	305	400	4	9	35	33	19	1.095
MSJ147-1	285	376	23	36	37	3	2	1.104
CO97065-7W	278	358	21	43	34	1	1	1.086
W2717-5	242	331	22	29	34	10	5	1.091
Mean	373	448	13	28	44	11	5	1.093
LSD (.05)	153	146		20	77		Ŭ	0.005
LSD (.01)	204	195						0.006

Clone	Vine Size ¹	Vine Maturity ²	Stems/ Plant	Fresh Merit Score ³	Avg. Tuber Size (oz.)	Tuber Shape⁴
	0.0	0.5	0.0	0.0	0.4	0.5
	2.0	2.5	2.3	2.8	8.4	2.5
W2324-1	2.5	3.0	2.4	2.3	7.8	2.5
W2310-3	1.0	2.0	3.0	2.3	9.8	2.8
CO97043-14W	1.5	2.0	2.8	2.8	6.8	2.0
MSJ036-A	2.0	2.5	2.3	4.3	5.6	1.5
NY138	2.0	2.0	1.7	3.0	6.5	2.0
NY139	2.0	2.5	2.9	3.0	5.7	2.0
CO96141-4W	1.0	1.5	2.7	3.5	6.3	2.5
BEACON CHIPPER	1.5	3.0	2.5	3.0	8.1	2.0
CO95051-7W	2.5	3.5	2.3	4.3	5.8	1.8
SNOWDEN	2.0	1.0	3.0	2.8	4.7	1.0
ND7519-1	2.0	1.5	3.3	3.0	5.3	1.5
AF2291-10	2.5	3.0	2.2	1.3	9.6	2.8
MSJ147-1	2.0	2.5	2.9	3.0	4.8	2.0
CO97065-7W	1.0	1.0	2.8	2.5	4.9	1.3
W2717-5	2.0	1.0	2.7	2.5	5.0	1.5
Mean ¹ (1-5) 5=Large	1.8	2.2	2.6	2.9	6.6	2.0

	Exte	rnal defe	cts ⁴		Internal Defects ⁶						
	Growth			F	%	% %		%			
Clone	Scab	Cracks	Knobs	Blackspot ⁵	HH	BC	IBS	V			
ATLANTIC	2.8	5.0	5.0	3.0	63	0	0	C			
W2324-1	3.3	5.0	4.8	3.9	43	0	0	C			
W2310-3	3.0	4.3	4.8	4.3	8	0	0	C			
CO97043-14W	1.8	4.5	5.0	3.2	0	0	0	(
MSJ036-A	4.5	4.5	5.0	3.2	20	5	0	(
NY138	3.3	5.0	5.0	2.3	0	0	0	(
NY139	3.5	5.0	5.0	3.6	3	0	0	(
CO96141-4W	3.8	5.0	5.0	2.5	0	0	0	(
BEACON CHIPPER	2.3	5.0	5.0	4.3	0	0	3	(
CO95051-7W	4.8	5.0	5.0	2.6	0	0	0	(
SNOWDEN	3.0	5.0	5.0	3.8	0	0	0	(
ND7519-1	3.5	4.8	5.0	3.0	5	0	30	(
AF2291-10	3.5	4.8	4.8	4.7	3	0	0	(
MSJ147-1	4.8	5.0	5.0	3.0	28	0	0	(
CO97065-7W	2.0	5.0	5.0	3.7	3	0	0	(
W2717-5	3.0	4.3	5.0	2.3	5	0	0	(
Mean	3.3	4.8	5.0	3.3	11.3	0.3	2.1	0			
⁴ (1-5) 5=None	oers peele										

Clone	Appearance comments	Chip color	Early Blight ⁷	Verticillium Wilt ⁷
	•	•		
ATLANTIC	green, scaley buff,scab	Not Available	2.0	3.0
W2324-1	dimpled, rot, shattered		3.0	2.5
W2310-3	non-uniform		2.0	1.5
CO97043-14W	ad stolons, scab, flat, deep ends		2.5	2.0
MSJ036-A	nice, ad stolons		3.0	2.0
NY138	It yellow, scab, slty flat		2.5	1.5
NY139	adhering stolons		3.0	2.0
CO96141-4W	deep ends		2.5	2.0
BEACON CHIPPER	flat, deep ends, ad stolons		2.5	2.5
CO95051-7W	nice		2.5	3.0
SNOWDEN	scaley, deep ends		2.0	1.0
ND7519-1	small		2.5	1.5
AF2291-10	rot, green, non-uniform		2.0	3.0
MSJ147-1	elongated		2.5	2.5
CO97065-7W	small, good shape		1.5	1.0
W2717-5	GC, shattered		2.0	1.0
Mean ⁷ (1-5) 5=severe.			2.4	2.0

Maine Regional Trial

Cooperators

Local Coordinator Ed Plissev, Research Dir. **Bio-Ag Research** 601 Yoho Head Road Machiasport, ME 04655 207-255-6166 Bioag97@aol.com

Cooperating Grower Dale Turner Turner Farms 30 Tabor Road Washburn, ME 04786 207-455-4901

Cooperating Processor Dennis Deary Frito-Lav Inc. 1886 Upper Maple Street Daville, CT 06241 860-779-0200 ext. 2304 Deary.Dennis@Fritolay.com

SFA Coordinator Dr. Don Halseth Cornell University 15D Plant Science Bldg. Ithaca, NY 14853 607-255-5460 deh3@cornell.edu

Variety Entries

1. Atlantic (field std.)	Giberson Farms, Fort Fairfield, ME
2. Snowden (storage std.)	Giberson Farms, Fort Fairfield, ME
3. AF2291-10	Dr. Greg Porter, University of Maine
4. MSJ147-1	Dr. Dave Douches, Michigan State, E. Lansing, MI
5. MSJ036-A	Dr. Dave Douches, Michigan State, E. Lansing, MI
6. Beacon Chipper	Dr. Dave Douches, Michigan State, E. Lansing, MI
7. NY 138	Dr. Walter DeJong, Cornell University, Ithaca, NY
8. NY 139	Dr. Walter DeJong, Cornell University, Ithaca, NY
9. ND7519-1	Dr. Susie Thompson, NDSU, Fargo, ND
10. W2324-1	Dr. Jiwan Palta, University of Wisconsin, Rhinelander,
11. W2310-3	Dr. Jiwan Palta, University of Wisconsin, Rhinelander,
12. CO97043-14W	Dr. David Holm, San Louis Valley Research Center, Co
13. CO95051-7W	Dr. David Holm, San Louis Valley Research Center, Co
14. CO96141-4W	Dr. David Holm, San Louis Valley Research Center, Co
15. CO97065-7W	Dr. David Holm, San Louis Valley Research Center, Co

Trial Data

Trial Location Soil Type Soil Test Previous Crop Planting Date Fertilization Plots Planter and Spacing Tillage and Pest Management Date Vine Kill Date Harvest Processing Date

Procedure

WI WI 0 O O Dr. David Holm, San Louis Valley Research Center, CO

> Tabor Road, Washburn, ME Caribou Loam MH to H, P, K Barley May 14, 2008 175 - 180 - 1401-36" Row by 250' 9.0" **Conventional Maine Cultural Practices** August 28, 2008 September 13, 2008 September 17-18, 2008

Seed sample shipments from regional breeding programs were received by Crane Brothers Farm in Exeter, Maine and held in seed storage until all samples had arrived. Seed lots were conditioned for cutting at Bio-Ag Research, hand cut and treated with a mancozeb base seed treatment fungicide. Seed lots were transported to Turner Farms in Washburn, Maine. The seed logs were planted on May 14, 2008 in 250 foot row length plots using a four-row Lockwood pick-type planter.

The trial site received standard cultural treatments and pest management applications throughout the growing season. No weed pressure and minimal insect pressure from Colorado Potato Beetle occurred during the growing season. Late Blight was reported occurring in the growing area but no evidence of the disease was

found in the trial area. Vines were treated with Regione Herbicide for vine desiccation on August 28, 2008. A field rating for stand and crop vigor was made on July 7, and a follow-up rating of crop vigor and maturity was made on July 25, 2008. The results of stand, vigor and maturity assessment are presented in Table 1. The trial area was harvested on September 13, 2008 and replicated yield samples were transferred to Bio-Ag Research grading laboratory for sizing and grade evaluation. A fifty-pound sample of each variety was delivered to Grass Brothers Farm in Blaine, Maine, and was transferred to the Frito-Lay potato chip plant in Dayville, Connecticut on September 15, 2008. Yield, size distribution and chip processing results are presented in Table 2. A thirty-pound sample of each variety was placed in jute bags and stored at random in a bin at the Turner Farms for chip fry evaluation following late-season storage.

Results

Most cultivars in the 2008 Maine Regional Trial exhibited excellent vigor as the season progressed. MSJ147-1 produced a poor stand that resulted in the lowest yield in the trial. Examination of seed pieces at harvest indicated many seed pieces had adequate eye distribution but germination resulted in aerial tubers at the seed piece and no emerging shoots. Silver scurf damage to the eye area of the seed pieces may have contributed to the nonemergence. AF2291-10 and MSJ147-1 appeared slow to develop strong vine growth early but appeared to recover well by late July. All other cultivars emerged with vigorous vine development and were showing minimal senescence at the time of vine desiccation.

		July 7, 2008		July 25, 2008
		Percent (%)		Varietal
Cultivar	Vigor	Stand	Vigor	Maturity Rating
Atlantic	9.0	95	9	Medium Late
Snowden	9.8	96	10	Medium Late
AF2291-10	6.0	94	9	Medium Early
MSJ147-1	5.5	70	8	Medium Early
MSJ036-A	10	96	10	Late
Beacon Chipper	9.8	96	10	Late
NY138	9.8	94	10	Late
NY139	9.0	94	9	Medium Late
ND7519-1	10	96	10	Medium
W2324-1	10	96	10	Medium Late
W2310-3	10	95	10	Medium Late
CO97043-14W	9.0	92	9	Medium
CO95051-7W	9.0	90	9	Medium
CO96141-4W	9.0	94	9	Medium Late
CO97065-7W	10	90	10	Medium Late
1,2,3 = See Appendi	x attached			

Table 1. Stand, Visual Vigor Appraisal and Maturity of USPB/SFA Potato Chip Cultivars Grown in Northern Maine – 2008.

All cultivars except MSJ147-1 produced acceptable total yield and high percentages of US No. 1 size distribution. A high incidence of Common Scab impacted the marketable yield of CO97065-7A and to a lesser extent the marketable yield of ND7519-1. A small percentage of sunburn was produced by all cultivars and was generally thought to be caused primarily by heavy rainfall just prior to row closure but following final hilling.

Beacon Chipper, CO97043-14W and AF2291-10 produced high percentages of over 3.5 inch diameter tubers indicating a narrower hill spacing may be useful in Northern Maine for these cultivars to limit and achieve a more desirable size distribution for potato chip manufacture.

All cultivars were processed into potato chips at the Frito-Lay plant in Dayville, CT within five days of harvest. Acceptable Agtron color measurements were found for all cultivars following commercial chip frying. Specific gravity and total solids were quite uniform for all cultivars, however the scores were somewhat lower than those found in earlier years when the trial was grown in the central Maine area. The Atlantic and Snowden standard varieties produced slightly higher solids as well as the cultivars AF2291-10 and ND7519-1.

MSJ036-A produced a high percentage of both external and internal discoloration upon chip frying resulting in the lowest Agtron chip color. Most other cultivar process defects were of an external nature and were associated with tuber greening.

The cooperation of Dale and Ward Turner of Turner Farms in Washburn, Maine and Dennis Deary at the Frito-Lay Plant in Dayville, CT is sincerely appreciated. The support of Gerald Miller at Aroostook Produce Distributors is also appreciated for arranging prompt delivery of the harvest samples to the chip plant for process evaluation. Appreciation is also extended to Todd Winslow at Maine Potato Growers Cooperative in Presque Isle, Maine for arranging harvest equipment and labor for the harvest and grading operations.

I am pleased to present this twenty-third and final annual report as local Maine Coordinator for the NPPB/SFA trial. I have enjoyed working with Dr. Richard Chase of Michigan State University and Dr. Don Halseth at Cornell University as the USPB-SFA Chip Trial Program Coordinators as well as the staff at the Potato Board and Snack Food Association who have been involved with this most effective national trial.

APPENDIX 1. RATING CODE FOR PLANT VIGOR FOR THE 2008 USPB/SFA CHIP TRIAL

Rating Code	Plant Vigor
1	Very Poor
2	Poor
3	+
4	
5	Fair
6	+
7	
8	++
9	Good
10	Excellent

	Yie	ld: CWT	./Ac.	F	Percent	(%) Siz	ze Distribu	tion	_	F	rito Lay	Plant	Data:	Dayvi	ille, CT Pl	ant
o ki	Marketable	Total	Percent		Cull		Medium	0	Specific		Agtron		-	lant D		"A"
Cultivar	Yield	Yield	U.S. No. 1	Culls	Туре	0 - 2"	2 - 3.5"	<3.5"	Gravity	Solids	Color	Int.	Ext.	Total	Туре	Value
W2324-1	436.3	462.5	94.3	3.3	Sb, Cs	3.5	90.3	2.7	1.080	19.6	69.8	0	3.8	3.8	Green	0.52
Beacon Chipper	r 402.0	423.5	94.9	1.2	Sb	7.4	70.6	20.8	1.073	17.9	70.3	0	0.5	0.5		-0.43
Snowden	390.0	405.5	93.7	1.1	Sb	9.9	89.0	0.0	1.085	20.6	70.8	2.1	3.1	5.2	Green	-0.56
NY138	387.5	416.3	93.1	3.8	Sb, Cs	4.8	87.2	4.2	1.073	18.1	70.4	0	3.8	3.8	Green	-0.83
MSJ036-A	381.5	412.0	92.6	0.4	Sb	11.3	86.3	2.0	1.075	18.4	68.7	11.0	7.8	18.8	Dk Color	0.93
Atlantic	361.0	388.5	92.9	2.5	Sb	9.7	81.2	6.6	1.080	19.4	69.1	2.0	3.0	5.0	Green	-0.35
ND7519-1	326.3	383.8	85.0	8.5	Sb, Cs	12.8	78.7	0.0	1.083	20.2	70.8	0	0	0		-1.13
CO96141-4	320.0	350.0	91.4	3.2	Sb	7.9	84.2	4.7	1.076	18.7	71.1	0	0	0		-1.35
CO97043-14W	313.8	341.3	92.0	5.0	Cs, Sb	5.8	75.8	13.4	0.072	17.8	69.4	0	3.1	3.1	Dk Edge	0.83
AF2291-10	302.5	310.5	97.4	0.3	Sb	4.6	86.1	9.0	1.085	20.6	70.7	2.1	4.1	6.2	Green	-0.56
CO95051-7W	282.5	306.3	92.2	2.5	Sb	10.6	86.9	0.0	1.079	19.4	68.9	0	2.6	2.6	Green	-0.61
CO97065-7W	278.8	348.8	80.0	16.5	Cs	7.9	75.6	0.0	1.077	18.9	69.1	0	1.1	1.1	Dk Edge	-0.21
W2310-3	272.5	286.3	95.2	0.9	Sb	7.8	91.3	0.0	1.075	18.7	71.1	0	0	0		0.48
NY139	258.8	278.3	96.4	1.8	Sb	6.0	90.2	1.8	1.076	18.7	71.1	0	0	0		-1.35
MSJ147-1	174.0	197.5	88.1	0.5	Sb	20.0	79.5	0.0	1.078	19.1	69.3	0	4.3	4.3	Dk Color	-0.08

 Table 2. Total and Marketable Yield, Size Distribution and Quality of USPB/SFA Potato Chip Cultivars Grown in Northern Maine - 2008

1=Specific gravity measured by SFA hydrometer

Cull Potato Code: Sb = sunburn, Cs = common scab

Michigan Regional Trial

Local Coordinators:

Cooperating Grower:

Cooperating Chip Processor:

Chris Long Dave Douches Michigan State University East Lansing, MI Tim & Todd Young Sandyland Farms LLC Howard City, MI Herr Foods, Inc. Nottingham, PA

Trial Data:

Planting Date: Vine Kill Date: Harvest Date: Row & Plant Spacing: Plots: GDD, Base 40

May 6, 2008 August 20, 2008 October 1, 2008 (148 DAP) 34" x 11"; irrigated Single rows for each entry approximately 300' long 2605

Trial Procedure:

Seed was mechanically cut on April 30, 2008 and delivered to the grower's storage the following day. No seed treatments were applied at the time of seed cutting.

One pre-harvest sugar profile was taken for each variety just prior to vine kill on August 20th. The pre-harvest sugar profile protocol was as follows: obtained a minimum of 40 tubers from each variety, taking all the tubers from each hill even if that required collecting more than 40 tubers. A canopy rating was taken for each variety as a percent rating of green foliage and canopy uniformity was noted as a percentage of how uniform the foliage health appeared. The number of hills required to obtain 40 tubers was recorded, along with the total number of stems harvested. From the tubers harvested, specific gravity, a glucose value (a percent by fresh weight), a sucrose rating (a percent by fresh weight X10) and an average tuber weight (in ounces) was established.

At harvest, three plot areas of 23 feet were harvested from each entry and were used to determine yield, size distribution, specific gravity and internal defects. Two - 40 lb. storage samples were collected from each entry and were placed in the grower's commercial storage for evaluation. One set of samples will be evaluated in the winter of 2008 and the other in the spring of 2009. Twenty-five tuber samples were also collected at harvest and stored at the Michigan Potato Industry Commission's Cargill Demonstration Storage Facility at approximately 48°F and 55°F for a monthly sugar profile evaluation at Techmark Inc. The storage sugar profiles began the day of harvest. Two out of the field chip samples were taken for each variety at harvest. One was sent to Herr Foods, Inc. for processing and the additional sample was processed at Michigan State University.

A plant growth and vigor observation was made on June 25th. The CO95051-7W and MSJ147-1 appeared to have the slowest rate of vine growth on this date.

Growing Season Weather:

Weather conditions during the 2008 growing season were cooler than average. Growing degree days base 40 recorded for this time period was slightly below the 10 year average of 2783. Total rainfall from May 6th through August 20th, was approximately 9". The daytime temperatures during this growing period never exceeded 90°F. Nighttime temperatures during the period May through August were also below the 10 year average recording only 13 nights with temperatures over 70 degrees F. The average specific gravity in Michigan was above average as a result of the reduced heat stress. The lack of heat units reduced overall yield and productivity of the potato crop.

Results:

Table 1 summarizes the yield, size distribution, and specific gravity data at harvest. W2324-1 and NY139 appeared to be very strong yielding varieties followed closely by NY138 and Kalkaska. CO96141-4W fell far below acceptable levels for specific gravity. NY138 and CO97043-14W recorded marginal specific gravity numbers. Beacon Chipper had one very poor replication and thus fell in the overall yield standing. Although CO95051-7W and MSJ147-1 appeared to yield below average, they both have excellent long term storage qualities. There were only 106 days from planting to vine kill. This had a major effect on full season varieties like CO95051-7W in that it reduced their yield potential.

	Yield	(cwt/A)		Percen	t Size Dist	ribution		_
Entry	US#1	TOTAL	US#1	Small	Mid-Size	Large	Culls	Specific Gravity
Snowden	569	598	95	4	85	10	1	1.081
W2324-1	555	604	92	5	77	14	3	1.078
NY139	521	542	96	3	88	8	1	1.082
NY138	504	525	96	4	79	17	1	1.066
Kalkaska	465	512	91	9	90	1	0	1.078
Atlantic	414	443	93	5	80	13	1	1.077
CO96141-4W	410	449	91	5	86	5	4	1.061
W2310-3	401	432	93	6	91	2	2	1.080
AF2291-10	394	414	95	3	79	17	2	1.078
CO97043-14W	379	402	94	6	86	8	0	1.068
CO97065-7W	363	408	89	10	89	0	1	1.079
ND7519-1	350	381	92	7	90	2	1	1.079
Beacon Chipper	320	333	96	4	79	17	0	1.072
W2717-5	318	354	90	9	88	2	2	1.085
MSJ147-1	254	336	76	24	76	0	1	1.089
CO95051-7W	177	210	84	16	83	1	0	1.072
MEAN	400	434	91	7	7 84	7		1 1.077

*small <1 7/8"; mid-size 1 7/8"-3 1/4"; large >3 1/4"

Table 2 summarizes the at-harvest tuber quality. Internal quality across the trial was generally acceptable. Hollow heart was prevalent in W2324-1 and to a lesser degree in Atlantic, AF2291-10 and W2717-5. Beacon Chipper exhibited two hollow heart in thirty oversize tubers, similar to Snowden. CO95051-7W exhibited slight aerial black leg symptoms throughout the plot.

Table 2. At-Harvest Tuber Quality	. Sandyla	and Farms,	Howard Cit	y, Michiga	an.						
-		Internal Defects ¹									
Entry	НН	VD	IBS	BC	Total Cut						
Snowden	1	1	0	0	30						
W2324-1	9	0	0	0	30						
NY139	0	0	0	0	30						
NY138	1	0	0	0	30						
Kalkaska	0	2	0	4	30						
Atlantic	4	0	0	0	30						
CO96141-4W	0	1	0	1	30						
W2310-3	0	0	0	0	30						
AF2291-10	4	0	0	0	30						
CO97043-14W	0	2	0	0	30						
CO97065-7W	0	1	0	1	30						
ND7519-1	0	2	1	0	30						
Beacon Chipper	2	0	0	1	30						
W2717-5	4	2	0	0	30						
MSJ147-1	0	0	0	0	30						
CO95051-7W	0	1	0	0	30						
¹ Internal Defects. HH = hollow heart, VD = va	scular discol	oration, IBS = i	nternal brown s	spot, BC = br	own center.						

Table 3 shows the post-harvest chip quality based on samples collected at harvest on October 1st and processed at Herr Foods, Inc. on October 6th. Chip colors were generally acceptable, with NY 138 having the highest Agtron score of 69.0. The varieties listed in ranked order based on observations from Herr Foods, Inc. are as follows: NY138, ND7519-1, W2717-5, CO97043-14W, W2310-1, MSJ147-1, AF2291-10, CO96141-4W, Snowden, NY139, Beacon Chipper, CO95051-7W, Atlantic, CO97065-7W, W2324-1 and Kalkaska.

	Agtron	SFA ²	Specific	Perce	nt Chip Def	fects ³	
Entry	Color	Color	Gravity	Internal	External	Total	
Snowden	61.3	2	1.071	15.8	10.0	25.8	
W2324-1	60.7	3	1.075	16.7	6.6	23.3	
NY139	62.2	3	1.073	29.4	2.3	31.7	
NY138	69.0	1	1.069	6.5	1.4	7.9	
Kalkaska	60.5	4	1.075	46.4	1.5	47.9	
Atlantic	64.9	3	1.074	30.4	4.2	34.6	
CO96141-4W	66.7	2	1.055	18.1	4.9	23.0	
W2310-3	62.7	2	1.078	10.7	1.8	12.5	
AF2291-10	64.4	1	1.075	17.6	10.4	28.0	
CO97043-14W	65.2	2	1.068	4.4	9.0	13.4	
CO97065-7W	64.4	3	1.081	16.2	4.7	20.9	
ND7519-1	64.0	1	1.073	2.9	1.5	4.4	
Beacon Chipper	64.7	3	1.076	13.5	11.3	24.8	
W2717-5	63.1	2	1.084	10.5	6.5	17.0	
MSJ147-1	62.4	2	1.084	9.0	1.5	10.5	
CO95051-7W	63.4	3	1.073	15.9	4.0	19.9	

Samples collected at harvest October 1st and processed by Herr Foods, Inc., Nottingham, PA on October 6, 2008 (5 days).

Chip defects are included in Agtron and SFA samples.

SFA Color: 1 = lightest, 5 = darkest

³Percent Chip Defects are a percentage by weight of the total sample; comprised of undesirable color, greening, internal defects and external defects.

Table 4 summarizes the results of the samples collected for black spot bruise. Two-25 tuber samples were collected at harvest. One sample served as a check and the second sample was stored for at least 12 hours at 50°F, then placed in a 6 sided plywood drum and rotated 10 times to produce a simulated bruise. Two to three weeks later, all samples were abrasively peeled and scored for the presence of black spot bruise. Among the "Simulated Bruise" samples, the best entries were NY138, CO96141-4W and CO95051-7W. NY139 and Snowden showed the lowest percent bruise free.

		A. Check Samples ¹									B. Simulated Bruise Samples ²										
							Percent	Average								Percent	Average				
	<u># of</u>	Bru	ises	Pe	Tuber	Total	Bruise	Bruises Per	<u># of</u>	Bru	ises	Per	r Tu	ber	Total	Bruise	Bruises Pe				
Entry	0	1	2	3	45	Tubers	Free	Tuber	0	1	2	3	4	5	Tubers	Free	Tuber				
Snowden	13	7	4	1		25	52	0.7	4	6	4	7	1	3	25	16	2.2				
W2324-1	12	4	6	3		25	48	1.0	7	3	6	4	4	1	25	28	1.9				
NY139	12	9	2	2		25	48	0.8	3	3	4	7	3	5	25	12	2.8				
NY138	24	1				25	96	0.0	24	1					25	96	0.0				
Kalkaska	15	6	4			25	60	0.6	9	8	4	2	1	1	25	36	1.2				
Atlantic	12	9	4			25	48	0.7	13	7	4	0	0	1	25	52	0.8				
CO96141-4W	25					25	100	0.0	20	4	1				25	80	0.2				
W2310-3	16	5	3	1		25	64	0.6	8	7	2	3	4	1	25	32	1.6				
AF2291-10	21	3	1			25	84	0.2	13	7	1	3	1		25	52	0.9				
CO97043-14W	21	3	1			25	84	0.2	17	5	3				25	68	0.4				
CO97065-7W	19	3	2	1		25	76	0.4	14	2	3	4	1	1	25	56	1.2				
ND7519-1	23	2				25	92	0.1	13	10	2				25	52	0.6				
Beacon Chipper	16	4	3	1	1	25	64	0.7	8	4	4	6	2	1	25	32	1.7				
W2717-5	19	4	1	1		25	76	0.4	12	7	2	4			25	48	0.9				
MSJ147-1	17	4	3	1		25	68	0.5	9	6	7	1	2		25	36	1.2				
CO95051-7W	22	2	1			25	88	0.2	21	3	1				25	84	0.2				

Tuber samples collected at harvest and held at room temperature for later abrasive peeling and scoring.

²Tuber samples collected at harvest, held at 50°F for at least 12 hours, then placed in a 6 sided plywood drum and rotated 10 times to produce simulated bruising. They were then held at room temperature for later abrasive peeling and scoring. *Table 5* summarizes the results of the pre-harvest panel data. Kalkaska appeared to be very immature on August 20th with a 1.067 specific gravity and a sucrose rating of 1.103. CO96141-4W and CO97043-14W appeared to be the earliest maturing varieties. W2324-1, NY139, ND7519-1 and MSJ147-1, based on canopy rating, appeared to be very late maturing lines. NY138 had the largest average tuber weight of 12.04 oz.

	Specific	Glucose ¹	Sucrose ²	nopy	Number of				
Entry	Gravity	%	Rating			Hills	Stems	Wei	
Snowden	1.081	0.002	0.398	70	90	4	11	12.	
W2324-1	1.070	0.007	0.475	100	100	3	12	8.0	
NY139	1.082	0.002	0.462	90	100	5	14	10.7	
NY138	1.070	0.002	0.409	70	90	4	7	13.3	
Kalkaska	1.067	0.003	1.103	75	100	3	9	5.6	
Atlantic	1.077	0.001	0.424	80	100	3	12	9.7	
CO96141-4W	1.061	0.000	0.198	30	90	4	12	9.2	
W2310-3	1.071	0.005	0.241	80	100	4	20	6.4	
AF2291-10	1.068	0.012	0.716	90	100	4	15	7.6	
CO97043-14W	1.068	0.001	0.219	50	90	4	12	9.7	
CO97065-7W	1.069	0.005	0.385	70	80	4	16	7.3	
ND7519-1	1.080	0.001	0.673	90	100	4	17	8.1	
Beacon Chipper	Not ava	ilable							
W2717-5	1.082	0.006	0.968	75	100	3	16	7.8	
MSJ147-1	1.069	0.002	0.421	90	100	5	16	5.1	
CO95051-7W	1.072	0.001	0.344	30	95	5	16	3.8	

The Canopy Uniformity is a percentage of how uniform the foliage health is at the date of observation.

⁵ The Average Tuber Weight is the total tuber weight collected, divided by the number of tubers reported in ounces.

Variety Comments:

<u>Snowden:</u> This was the top yielding variety in the 2008 variety trial with a 569 cwt./A US#1 yield and an above average specific gravity. This variety was average in overall chip performance at Herr Foods at the out-of-the-field fry test. Snowden was the second most susceptible line to black spot bruise in the trial.

<u>W2324-1</u>: This variety was the second highest yielding line at 555 cwt./A. It had 14 percent oversize tubers and recorded nine out of thirty tubers with hollow heart. W2324-1 exhibited the most hollow heart of any line in the trial. This line ranked second from the bottom in out-of-the-field chip performance at Herr Foods. Some moderate black spot bruise susceptibility was noted. The August 20th pre-harvest panel data revealed that this variety was immature at the time of vine kill and was still bulking when it was killed. Based on the pre-harvest data, W2324-1 is a full season variety.

<u>NY139</u>: NY139 had a nice yield of US#1 tubers and good size distribution with an above average specific gravity for the trial. The internal defects were excellent, but the at-harvest chip fry ranked this variety 10th out of the 16 varieties for overall appearance. This variety had the greatest black spot bruise susceptibility in the 2008 trial.

<u>NY138</u>: This variety recorded a nice overall yield with large tuber size, but displayed a 1.066 specific gravity, which is far out of the tolerable range. Internal defects were good with the best out-of-the-field chip quality at Herr Foods with a 69 Agtron score recorded. Also, this variety was the least susceptible to black spot bruise in the trial.

<u>Kalkaska</u>: Kalkaska was well above average in yield at 465 cwt./A US#1. The specific gravity for this variety was slightly above the trial average. This variety exhibited slight brown centers in 4 out of thirty cut tubers. This variety ranked last at Herr's out-of-the-field chip evaluation. Kalkaska was moderately susceptible to black spot bruise and ranked about average.

<u>Atlantic</u>: Atlantic was slightly above average in yield with the specific gravity at the trial average of 1.077. This variety had a slight incidence of hollow heart with 4 out of thirty hollow noted. Atlantic was number 13 at Herr's October chip quality evaluation. Atlantic had slight black spot bruise susceptibility.

<u>CO96141-4W</u>: This variety had a 410 cwt./A US#1 yield with the lowest recorded specific gravity in the trial at 1.061. Internal defects were good ranking 8th at Herr's for chip quality. The variety does not appear to be black spot bruise susceptible, but with this low of SG this is not uncommon. The specific gravity of this line is out of tolerance for chip processing. This variety appeared to be very mature in the August 20th pre-harvest panel indicating that this variety is an early maturing line.

<u>W2310-1</u>: This variety yielded at the trial average of 400 cwt./A US#1. W2310-1 had an above average specific gravity at 1.080. The internal tuber quality was excellent. This variety ranked 5^{th} in the Herr Foods chip evaluation and exhibited moderate black spot susceptibility in the bruise evaluation. This variety appears to be a full season type.

<u>AF2291-10:</u> This variety was slightly below average in tuber yield with an average specific gravity. The variety had 4 severe hollow heart in thirty cut tubers. This line ranked 7th at Herr's. AF2291-1 appeared to be tolerant to black spot bruise. This variety may have still been bulking when vine killed in late August which could have reduced yield, specific gravity and impacted chip quality.

<u>CO97043-14W</u>: The US#1 yield for this line was 379 cwt./A with below average specific gravity. Internal defects were low and the out-of-the-field chip quality was above average ranking 4th at Herr's. The variety appeared to be tolerant of black spot bruise. This variety was mature at the time of vine kill and appears to have a mid season maturity.

<u>CO97065-7W</u>: This variety had a 363 cwt./A US#1 yield with an above average specific gravity. Internal defects were low, but ranking at Herr's was poor coming in at number 14. Black spot bruise susceptibility was moderate for this line. The vine maturity appears to be mid to late season.

<u>ND7519-1</u>: The yield on ND7519-1 was below average at 350 cwt./A US#1. The specific gravity was excellent at 1.085. Internal defects were low and the ranking at Herr's was excellent, ranking second of 16 varieties in out-of-the-field chip performance. This variety could possibly be late maturing.

<u>Beacon Chipper:</u> The low yield recorded for this line in 2008 is not typical for this variety in our area and is most likely a result of a poor replication. The variety exhibited two hollow in thirty and ranked 11th in the out-of-the-field chip evaluation.

<u>W2717-5</u>: W2717-5 yielded 318 cwt./A US#1 with a specific gravity of 1.085. The variety had four hollow and two vascular discoloration in thirty cut tubers. Herr's ranked this variety 3rd in the overall chip quality evaluation. The line appears to be tolerant of black spot bruise and was nearly mature at time of vine kill.

<u>MSJ147-1</u>: This variety recorded the second lowest yield in this year's trial which was similar to 2007 data where it ranked last in yield. This variety recorded the highest percent of "small" potatoes at 24% with the highest specific gravity in the trial at 1.089. Internal tuber quality was excellent while receiving 6th place at Herr's in the chip quality ranking. This variety appears to be late maturing and may not have been mature when vine killed in late August. MSJ147-1 appears to have excellent long term storage quality, storing well into late May in 2007 from larger scale commercial trials.

<u>CO95051-7W</u>: US#1 yield was the lowest in the trial this year at 177 cwt./A. The specific gravity was marginal at 1.072. Raw internal quality was good. This line ranked 12th at Herr Foods for chip quality. Tuber immaturity could again be the result of poor yield and chip performance. This variety was stored until June 9th in 2007 from a commercial trial and chip processed very well at this time at a regional chip plant. Black spot bruise susceptibility was noted as only a trace at 0.2 bruises per tuber.

Missouri Regional Trial

Location: Arbyrd, MO 2008 - Black Gold Farms

Objective: Evaluate all current and near-future cultivars for maturity, yield, and quality.

Trial Outline:

Varieties included in statistical analysis:	17						
Planting Date:	3/25/2008						
Planting Method	Hand planted using	g spacing tapes					
Harvest Dates:	07/10/08	107 DAP					

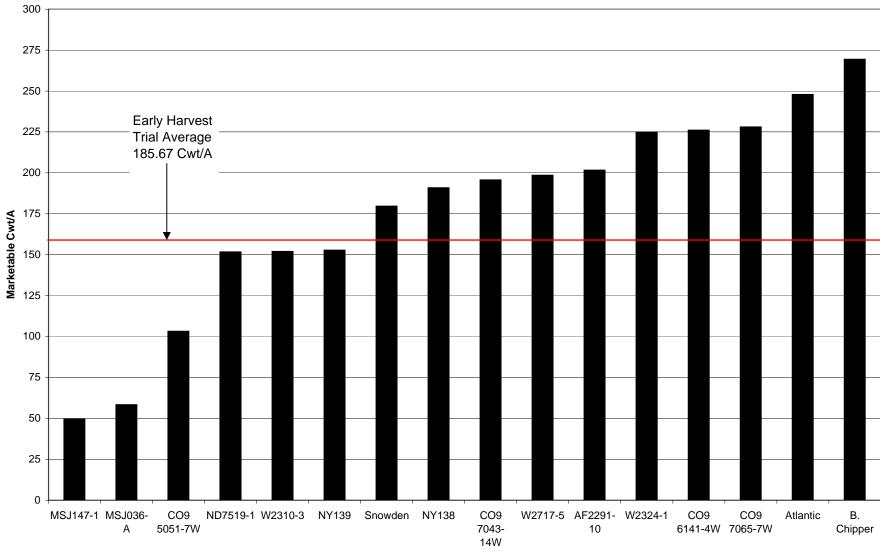
	Statistical Design:		Randomize	d Complete Block
	Replications:		4	
	Rows/Rep:		4	
	Length of Plot:		15	feet
	Row Spacing:		34	inches
	Scale:	1/	1025	of an Acre/Row
	Seed Piece Size:		2.5	OZ
	Seed Spacing:		10	inches
	Hills/ Row:		20	
	Variety	Seed Source	e	
1)	Atlantic	Black Gold	Farms	
2)	Snowden	Black Gold	Farms	
3)	AF2291-10	University of	of Maine	
4)	B. Chipper	Michigan St	tate Universi	ty
5)	CO95051-7W	Colorado St	ate Universi	ty
6)	CO96141-4W	Colorado St	ate Universi	ty
7)	CO97043-14W	Colorado St	ate Universi	ty
8)	CO97065-7W	Colorado St	ate Universi	ty
9)	MSJ036-A	Michigan St	tate Universi	ty
10)	MSJ147-1	Michigan St	tate Universi	ty
11)	ND7519-1	North Dako	ta State Univ	versity
12)	NY138	Cornell Uni	versity	
13)	NY139	Cornell Uni	versity	
14)	W2310-3	University of	of Wisconsin	
15)	W2324-1	University of	of Wisconsin	
16)	W2717-5	University of	of Wisconsin	

Harvest Notes:

- Several plots were lost due to excessive rainfall during the month of March

Missouri Regional Trial

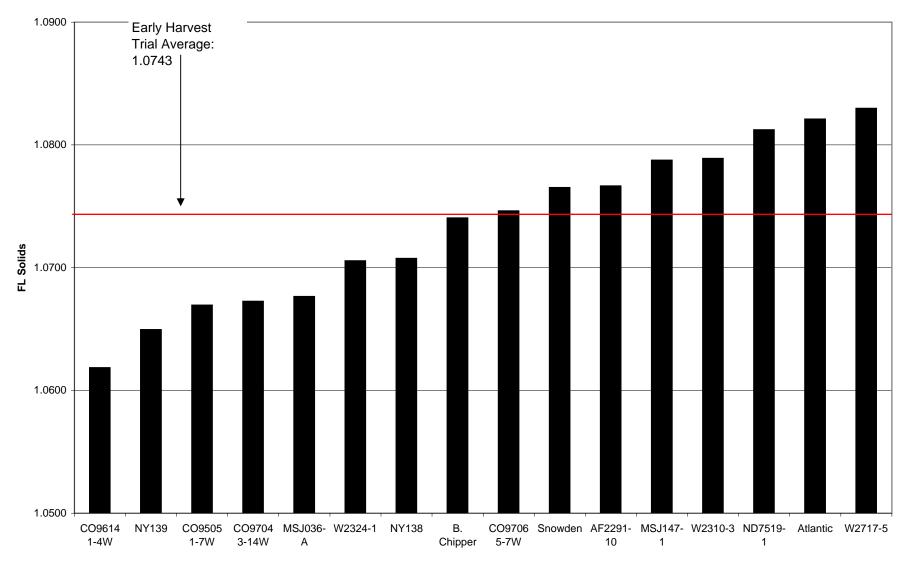
Arbyrd, MO 2008 - Black Gold Farms


Planting Date: 3/25/08

Harvest Date: 7/10/2008

DAP: 107

									Mar	ketable \	lield	Total	Quality Assurance						
	Vine	%		1" - 2"			> 4"			2" - 4"		Yield	d Specific		Cook	Sam	ple D	efect	S
Variety	Vigor	Ground Cover	tubers/ plant	% of total	Cwt/ac	tubers/ plant	% of total	Cwt/ac	tubers/ plant	% of total	Cwt/ac		Gravity	CLR	% UC	% GRN	% ID	% ED	% Total
Atlantic	2.1	26.3	3.0	20	60.6	0.0	0.0	0.0	5.4	80.3	248	308	1.082	67	10.2	0.0	3.3	0.0	13.5
Snowden	2.3	30.0	3.5	28	69.4	0.0	0.0	0.0	4.1	72.1	180	249	1.077	68	1.3	0.0	0.0	0.0	1.3
AF2291-10	2.0	18.8	3.8	28	79.5	0.0	0.0	0.0	4.8	71.7	202	281	1.077	69	0.0	0.0	0.0	3.5	3.5
B. Chipper	2.0	21.3	1.7	11	34.9	0.0	0.0	0.0	4.7	88.5	269	304	1.074	70	3.4	0.0	0.0	0.0	3.4
CO95051-7W	1.3	15.0	5.6	54	121.4	0.0	0.0	0.0	2.6	45.9	103	225	1.067	67	0.0	0.0	1.0	0.0	1.0
CO96141-4W	1.5	16.3	4.2	28	88.7	0.0	0.0	0.0	5.0	71.8	226	315	1.062	67	6.9	0.0	0.0	5.2	12.1
CO97043-14W	1.9	18.8	3.2	25	65.1	0.0	0.0	0.0	4.3	75.0	196	261	1.067	69	0.0	0.0	0.0	0.0	0.0
CO97065-7W	1.6	21.3	2.5	18	51.7	0.0	0.0	0.0	5.1	81.5	228	280	1.075	67	2.1	0.0	0.0	0.0	2.1
MSJ036-A	2.4	25.0	3.2	53	65.6	0.0	0.0	0.0	1.4	47.0	58	124	1.068	63	12.5	0.0	1.8	4.1	18.4
MSJ147-1	1.8	20.0	6.8	74	139.7	0.0	0.0	0.0	1.4	26.1	49	189	1.079	67	0.0	0.0	0.0	2.5	2.5
ND7519-1	1.0	0.0	6.7	48	141.7	0.0	0.0	0.0	3.7	51.7	152	293	1.081	71	0.0	0.0	1.4	0.0	1.4
NY138	1.5	18.8	2.1	19	45.3	0.0	0.0	0.0	3.9	80.8	191	236	1.071	64	0.0	0.0	0.0	2.0	2.0
NY139	1.6	18.8	3.0	30	64.0	0.0	0.0	0.0	3.3	70.5	153	217	1.065	69	1.0	0.0	0.0	0.0	1.0
W2310-3	2.6	32.5	3.7	34	79.6	0.0	0.0	0.0	3.8	65.6	152	231	1.079	70	0.0	2.4	0.0	0.0	2.4
W2324-1	2.6	31.3	4.4	28	86.7	0.0	0.0	0.0	4.9	72.2	225	312	1.071	69	0.0	0.0	1.6	0.0	1.6
W2717-5	2.8	33.8	3.6	27	74.6	0.0	0.0	0.0	4.2	72.7	198	273	1.083	69	0.0	0.0	0.0	0.0	0.0
LSD (.10)	0.27	4.99	0.93		19.69	0.00		0.00	1.06		53.19		0.002						
Standard Deviation	0.16	2.96	0.55		11.69	0.00		0.00	0.63		31.59		0.001						
Coefficient of Variance	8.09	13.20	14.82		15.30	-		-	15.67		17.01		0.138						
Observed F Value	20.89	16.72	14.46		15.24	-		-	7.77		10.21		46.564						


USPB/SFA Chip Trial Marketable Cwt/A (Sorted) Arbyrd, MO 2008

Variety

■107 DAP

USPB/SFA Chip Trial Specific Gravity (Sorted) Arbyrd, MO 2008

Variety

North Carolina Regional Trial

Local Coordinators: Processor:		Cooperating Grower:	Cooperating Chip			
Dr. Craig Yencho North Carolina State Univ 214A Kilgore Hall Raleigh NC, 27695	versity	Chris Hopkins Black Gold Farms 2815 N Gum Neck Road Columbia, NC 27925	Utz Quality Foods Hanover, PA			
Mr. Mark Clough North Carolina State Univ 207 Research Station Rd. Plymouth NC 27962						
Trial Data:						
Planting Site:	Black Gold Far	rms, Gum Neck, Tyrrell County, NC				
Planting Date:	March 4, 2008					
Harvest Date:	June 19, 2008 ((107 days)				
Growing Conditions:		n time, but dry. Temperatures and rainfall were favorable for plant growth Late May to mid-June was very dry and warm.				
Soil Type:	Weeksville bla	ck silt loam				
Experimental Design:	Randomized co	omplete block design with 5 replication	ons.			
Row Spacing:	28 hills, 9 inch	es apart, 34" row width.				
Fertilizer:	21 lbs N, 57 lbs	lbs P, 76 lbs K (preplant) s P, 5lbs S, 0.5 lbs Zn (at planting) łress), 1 pt/A 10% Zn (2 times in sea	son)			
Weed Control:	Sencor DF 1.0	lbs/A				
Insect Control:	Actara 1.5 oz/A	Δ				
Disease Control:	Quadris 6.20z/A Manzate Pro-st Manzate Pro-st					

									_			Chip C	color ³
	Total Yield	Marketable Yield		% Size Di	stributior	<u>ı by Cla</u>	ss ¹		1 ⁷ / ₈	$2^{1}/_{2}$	Specific	24 to	5 to
Clone cwt/A cwt/A	cwt/A	1	2	3	4	5	Culls	to 4" to 4"	Gravity ²	48 hrs	7 days		
AF2291-10	284	256	8	46	43	1	0	2	90	44	1.095	2	2
Atlantic	375	324	10	38	47	2	0	4	86	49	1.097	1	1
Beacon Chippe	r 320	263	11	53	29	0	0	7	82	29	1.093	2	1
CO95051-7W	288	232	16	61	19	1	0	4	80	20	1.082	1	1
CO96141-4W	364	315	11	55	31	0	0	3	87	32	1.080	2	2
CO97043-14W	347	284	16	57	24	0	0	2	82	25	1.085	2	2
CO97065-7W	304	265	10	55	32	0	0	2	87	32	1.096	2	2
MSJ036-A	355	306	12	65	21	0	0	2	86	21	1.086	2	2
MSJ147-1	205	83	60	40	0	0	0	0	40	0	1.098	2	1
ND7519-1	337	276	17	62	19	0	0	1	82	19	1.103	1	1
NY138	284	261	8	23	68	1	0	1	92	69	1.082	3	1
NY139	308	278	7	42	48	0	0	2	90	48	1.090	2	1
Snowden	315	261	17	64	19	0	0	0	83	19	1.094	2	1
W2310-3	293	256	11	47	40	0	0	1	87	40	1.094	2	2
W2324-1	376	333	10	45	43	1	0	1	89	44	1.090	2	1
W2717-5	264	229	9	51	36	0	0	4	87	36	1.095	1	2
Grand Mean	314	264											
CV(%)	6.9	8.5											
LSD(K=100)	25.2	25.5											

Table 1.North Carolina. Total and marketable yield, percentage of total yield by size class, specific gravity and chip scores

¹ Size Classes:

1's < 17/8"; 2's 17/8 to 21/2"; 3's 21/2 to 31/4"; 4's 31/4 to 4"; 5's ≥ 4"; Culls = all defective potatoes.

² Specific Gravity

Determined by weight in air/water method.

³ Chip Color

Ratings conducted by the NCSU Potato Breeding Program at the TRS/VGJREC within 48 hrs and again in 5 to 7 days after harvest: 1 = no defects, exceptionally bright; 2 = excellent, bright; 3 = good, light or golden; 4 = dark defects, marginal; 5 = not acceptable.

Plant Data ¹							Tub	er Da	ata ²				C	% Inter	% Internal Defects ³				
Clone	TYPE	DIS	POLL	MAT	CLR	TXT	тсх	TSS	SHP	EYE	SIZE	DIS	APP	HN	HNR	ΗH	VR	BC	SR
2291-10	9	8	8	8	7	7	7	6	4	7	7	8	6	0	9	8	0	0	0
Atlantic	6	7	8	5	7	6	7	6	2	5	7	7	6	8	8.4	12	0	36	0
eacon Chipper	6	7	8	6	9	7	7	7	3	5	6	9	4	0	9	0	0	0	0
O95051-7W	6	8	8	7	9	8	7	7	2	7	6	6	6	6	8.4	0	0	0	0
O96141-4W	6	8	8	7	9	8	5	7	5	7	7	8	6	2	8.4	8	0	0	0
O97043-14W	6	8	8	6	9	9	7	7	2	8	5	8	7	0	9	2	0	6	8
O97065-7W	6	7	8	5	6	7	7	7	1	8	6	8	7	0	9	0	0	2	6
SJ036-A	6	8	8	7	6	6	7	6	2	5	6	8	6	0	9	0	0	8	0
SJ147-1	6	7	8	8	9	7	6	7	2	7	2	9	5	0	9	0	0	0	0
D7519-1	9	8	8	5	6	7	5	7	3	7	6	8	5	48	8.0	0	0	32	2
Y138	9	9	8	6	7	7	7	7	3	7	7	8	8	2	8.8	0	0	0	8
Y139	6	8	8	6	6	7	6	7	4	7	7	8	7	0	9	0	0	0	2
nowden	9	8	7	7	6	6	7	7	2	5	5	8	5	0	9	0	0	0	4
/2310-3	6	7	8	5	6	6	4	7	5	6	7	8	5	0	9	0	0	0	0
2324-1	5	7	8	4	6	7	7	7	3	5	6	8	4	2	8.8	2	0	0	2
2717-5	6	7	8	6	9	8	6	7	3	7	5	8	5	0	9	2	0	6	0

Table 2. North Carolina. Plant vine type, disease and air pollution scores, maturity at ca. 3 weeks prior to harvest, and external and internal tuber attributes.

Plant Data:

Vine Type: 1 = decumbent – poor canopy, 2 = decumbent – fair canopy, 3 = decumbent – good canopy, 4 = spreading – poor canopy, 5 = spreading – fair canopy, 6 = spreading - good canopy, 7 = upright – poor canopy, 8 = upright – fair canopy, 9 = upright good canopy.

Vine Disease: 1 = very severe, 5 = moderate, 9 = none.

Vine Pollution: 1 = very severe, 5 = moderate, 9 = none.

Vine Maturity: 1= very early, 5 = mid-season, 9 = very late.

² Tuber Data:

Skin Color: 1 = purple, 2 = red, 3 = pink, 4 = dark brown, 5 = brown, 6 = tan to light brown, 7 = buff, 8 = white, 9 = cream.

Skin Texture: 1= partial russet, 2 = heavy russet, 3 = moderate russet, 4 = light russet, 5 = netted, 6 = slight net, 7 = moderately smooth, 8 = smooth, 9 = very smooth.

Cross Section: 1 = very flat, 3 = flat, 5 = intermediate to oval, 7 = mostly round, 9 = very round.

Skin Set: 1 = very poor, 5 = fair, 9 = excellent.

Shape: 1 = very round, 2 = mostly round, 3 = round to oblong, 4 = mostly oblong, 5 = oblong, 6 = oblong to long, 7 = mostly long, 8 = long, 9 = cylindrical.

Eye Depth: 1= very deep, 5 = medium, 9 = very shallow.

Size: 1 = small, 5 = medium, 9 = large.

Tuber Disease: 1 = very severe, 5 = moderate, 9 = none.

Overall Appearance: 1 = very poor, 5 = fair, 9 = excellent.

³ Internal Defects:

Percentage determined from 10 randomly selected potatoes /rep (40 total) in size classes 3 and 4. HN=heat necrosis; HNR=average heat necrosis rating (Rating Scale: 1= very severe to 9 = absent); HH=hollow heart; VR=vascular ring discoloration; BC=brown center; SR=soft rot

Table 3. UTZ Quality Foods Chip Data – North Carolina Regional Trial.

	% De	efects	%Total	Specific	Defect De	escriptions ¹	Chi	o Color ²	
Clone	Internal	External	Defects	Gravity	Internal	External	Hunter Lab	Agtron	Visual
AF2291-10	4%	1%	5%	1.100	VR	WW	63.17	66.0	1
Atlantic	16%	24%	40%	1.098	ID	WW	62.9	65.3	2
Beacon Chipper	0%	5%	5%	1.109		ED	64.6	70.4	1
CO95051-7W	1%	0%	1%	1.083	ID		63.5	67.7	1
CO96141-4W	5%	1%	6%	1.090	VR,SB	WW	64.3	70.1	1
CO97043-14W	4%	0%	4%	1.093	ID		64.6	70.4	1
CO97065-7W	0%	1%	1%	1.103		WW	65.5	71.2	1
MSJ036-A	39%	0%	39%	1.091	ID,VR		64.4	70.4	2
MSJ147-1	0%	6%	6%	1.098		WW	61.1	60.9	2
ND7519-1	1%	0%	1%	1.110	ID		63.8	68.9	1
NY138	2%	4%	6%	1.078	ID,HH	WW	64.4	70.2	1
NY139	2%	4%	6%	1.104	SB	WW	64.60	70.5	1
Snowden	5%	0%	5%	1.102			62.5	64.5	1
W2310-3	0%	2%	2%	1.112	ID,VR	WW	63	65.3	1
W2324-1	15%	7%	22%	1.100	ID,SB	BR	62.5	64.5	1
W2717-5	4%	0%	4%	1.100			64.6	70.8	1

¹ Defect Descriptions:

BR = Bruising; ED = External Discoloration; HH = Hollow Heart; ID = Internal Discoloration; SB = Stem End Browning; VR = Vascular Ring Discoloration; WW = Wire Worm.

² Chip Color:

Hunter Lab Scores

Taken with defective chips included in sample

Visual Scores

Ratings conducted by the UTZ Quality Foods Inc. in Hanover PA with in 24 hrs of harvest. Visual Rating Score: 1 = no defects, exceptionally bright; 2 = excellent, bright; 3 = good, light or golden; 4 = dark defects, marginal; 5 = not acceptable. *= brightest chip in visual observation

Clone Summaries

AF2291-10: Maturity for this clone was late with 95% stands and fair vigor. Shapes were mostly oblong, size was medium to large and overall appearance was better than fair. Marketable yields were 79% of Atlantic, gravity was 1.095 and chip color was excellent in both the 24 to 48 hour and 5 to 7 day chip tests. No significant internal defects were recorded. External defects included misshapes, growth cracks, sunscald and skin blemishes due to Rhizoctonia.

Beacon Chipper: This was a slightly later than mid-maturing clone with 100% stands and good vigor. Shapes were round to oblong, size was medium to large and overall appearance was better than fair. Marketable yields were 82% of Atlantic, gravity was 1.093, and chip color was excellent in the 24 to 48 hour and exceptional 5 to 7 day chipping. No significant internal defects were observed, external defects included growth cracks, and misshapes.

CO95051-7W: This clone was late maturing and had 97% stands and vigor was less than fair. Shapes were mostly round, size was a step better than medium, and overall appearance was better than fair. Marketable yields were 82% of Atlantic, gravity was 1.082, and chip color was exceptional in both the 24 to 48 hour and the 5 to 7 day chip tests. External defects included sunscald, star cracking, and high levels of skin blemishes due to Rhizoctonia.

CO96141-4W: Maturity for this clone was late season with 99% stands, and vigor was better than fair. Shapes were oblong, size was medium, and overall appearance was better than fair. Marketable yields were 98% of Atlantic, gravity was 1.085, and chip color was excellent in the 24 to 48 hour test and excellent in the 5 to 7 day chip test. External defects included sunscald, and misshapes.

CO97043-14W: Maturity for this clone was slightly late than mid-season with 99% stands, and good vigor. Shapes were mostly round, size was medium and overall appearance was good. Marketable yields were 88% of Atlantic, gravity was 1.085 and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects included sunscald and black scurf.

CO97065-7W: This clone was mid-maturing and had 99% stands with good vigor. Shapes were very round, size was slightly better than medium, and overall appearance was good. Marketable yields were 82% of Atlantic, gravity was 1.096 and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects were sunscald and skin blemishes due to Rhizoctonia.

MSJ036-A: This was a late maturing clone with 93% stands and fair vigor. Shapes were mostly round, size was slightly larger than medium, and overall appearance was better than fair. Marketable yields were 95% of Atlantic, gravity was 1.086 and chip scores were excellent for both the 24 to 48 hour and 5 to 7 day chip tests. External defects were sunscald, misshapes, and skin blemishes due to Rhizoctonia.

MSJ147-1: Maturity for this clone was late, stands were 100%, and vigor was better than fair. Shapes were mostly round, size was small, and overall appearance was fair. Marketable yields were 26% of Atlantic, gravity was 1.098, and chip color was excellent in the 24 to 48 hours test and exceptional in the 5 to 7 day chip test. External defects included common scab.

ND7519-1: This clone was mid-maturing, stands were 97% and had better than fair vigor. Marketable yields were 86% of Atlantic, gravity was 1.103, and chip scores were exceptional for both the 24 to 48 hour and 5 to 7 day chip tests. Internal defects of tubers sampled included 48% internal heat necrosis with a severity rating of 8.0 and 32% brown center. External defects included sunscald.

NY138: This slightly later than mid-maturing clone had 96% stands and fair vigor. Shapes were round to oblong, size was medium-large, and overall appearance was better than good. Marketable yields were 82% of Atlantic, gravity was 1,082, the chip score for the 24 to 48 hour test was good and the score for the 5 to 7 day test was exceptional. External defects included soft rot, misshapes, and sunscald.

NY139: Maturity for this clone was slightly later than mid-season, stands were 95% and vigor was fair. Shapes were mostly oblong, size was medium to large, and overall appearance was good. Marketable yields were 87% of Atlantic, gravity was 1.090, the chip score for the 24 to 48 hour test was excellent and the score for the 5 to 7 day test was exceptional. External defects included sunscald, misshapes, soft rot, and skin blemishes due to Rhizoctonia.

W2310-3: This clone was mid-maturing with 96% stands and better than fair vigor. Shapes were oblong, size was medium to large and overall appearance was fair. Marketable yields were 79% of Atlantic, gravity was 1.094, and chip scores were excellent in both the 24 to 48 hour and 5 to 7 day chip tests. External defects included sunscald, common scab, and misshapes.

W2324-1: This clone had stands of 99%, and was mid to early maturing with good vigor. Shapes were round to oblong, size was slightly larger than medium and overall appearance was less than fair. Marketable yield was 104% Atlantic, gravity was 1.090, and chip scores were excellent in the 24 to 48 hour and exceptional in the 5 to 7 day tests. External defects included sunscald, soft rot, common scab, and misshapes.

W2717-5: This clone was slightly later than mid-season with 99% stands and fair vigor. Shapes were round to oblong, medium sized, and fair for overall appearance. Marketable yields were 71% of Atlantic, gravity was 1.095, and chip scores were exceptional in the 24 to 48 hour and excellent in the 5 to 7 day tests. External defects included growth cracks, misshapes, sunscald, soft rot, and skin blemishes due to Rhizoctonia.

Pennsylvania Regional Trial

Local Coordinator:		Cooperative Grower:	Cooperating Chip Processor:
Dr. Bill Lamont		James Hite	Snyder of Berlin
Penn State Univ	' .	Patton, PA 16668	John Blough
Department of H	lorticulture		Berlin, PA 15530
University Park,	PA 16802		
Trial Data:			
Planting Date:	07-May-08	So	I Temperature: 60°F

r lanting Date.	or may bo		
Vine Kill Date:	7-Sep-08		
Harvest Date:	22-Sep-08	138 days	Soil Temperature: 60°F

Row and plant spacing: 34 inches between rows; 10.5 inches between plants; Plot length 25 feet, 4 replications

Growing Season Werather: The growing season was warm and dry with about 14.25 inches of rain from May 1 through September 22, 2008. The plot was not irrigated.

	*Avg. High ⁰F	*Avg. Low ⁰F	*Rain (inches)	*Temperatures as reported at
Мау	66	45	1.00	at Altona, PA by Pennsylvania
June	79	60	1.40	State Climatologist
July	81	62	4.90	
August	78	57	6.95	*Rainfall as reported at Patton,
September	71	54	Trace	PA by James Hite
Total Rainfall	(May thru Sept	tember 22)	14.25	-

Trial Procedure:

Previous crop: Wheat

Soil Type: shaley loam

Fertilizer:	13-13-13 1,250 pounds
Irrigation:	Rainfall 14.25 inches
Herbicides:	Pre planting: Round-up (0.67 quart), Request (water conditioning 1 qt/100 ga) Sencor (2/3 pound) / Medal (1 pint) - 2 sprays
Insecticides:	Baythroid (2 ounces) / Thionex (1.3 quarts) -2 sprays Spintor (4 ounces) - 2 sprays
Fungicides:	Manzate $^{ m B}$ (5 sprays, total of 7 pounds Manzate $^{ m R}$ over growing season)
Vine Kill:	Reglone (1 pint) / Induce (1 pint)

Pennsylvania Regional Trial

	Yield (cwt/A) Percent Size Distribution						on	Characteristics					
Entry	No. 1	Total	No. 1	Small	Mid- Size	Large	Culls	-		% Hollow Heart	Major External Defects	Maturity Rating ^b 1 = Dead 5 = Green	
W2324-1	305.5	346.7	88	9	88	0	3	47	1.099	0	SB MS RH GC	3	
Snowden	290.9	362.1	80	16	80	1	3	50	1.099	0	SB RH FR ST	5	
Atlantic	286.7	335.9	85	6	85	3	7	44	1.096	20	SB RH GC ST	4	
CO97043-14W	270.9	323.6	84	7	84	4	5	50	1.089	0	SB GC FR	3	
NY139	256.7	301.7	85	8	85	2	5	42	1.094	0	SB RH	3	
Beacon Chipper	237.0	312.1	76	4	76	17	4	47	1.091	0	SB MS RH	3	
MSJ036-A	228.2	266.3	86	12	86	0	2	47	1.093	0	SB RH	3	
AF2291-10	203.6	262.4	78	5	78	11	6	51	1.094	15	SB RH MS	4	
NY138	199.6	228.8	87	9	87	0	3	56	1.093	0	SB ST RH	3	
ND 7519-1	198.6	248.6	80	17	80	0	3	44	1.095	0	SB RH SG	2	
W2310-3	188.2	217.8	86	11	86	0	2	46	1.099	0	SB MS RH	2	
CO95051-7W	168.2	192.4	87	7	87	2	4	43	1.090	0	SB RH PC	5	
MSJ147-1	149.3	210.9	71	28	71	0	1	48	1.092	0	SB RH	5	
CO96141-4W	147.4	183.2	80	9	80	2	9	53	1.089	0	SB RH MS	2	
CO97065-7W	107.4	143.9	75	8	75	2	15	49	1.092	0	SB GC ST	1	
W 2717-5	106.2	152	70	5	70	7	18	45	1.099	20	SB MS PC RH	3	
Mean	209	256						48	1.094				
lsd 0.05	73	63						^a Samp	les proces	ssed 23	-Sep-08 by	^b Rating Date	
CV%	20	21						Snyder	of Berlin			22-Aug-08	

Defects:

SB = sunburn MS = mis-shapen PC = Pressure Crack ST = Stone Damage GC = growth cracks FR = Fusarium Rot SG = Secondary Growth RH = Rhizoctonia

Red River Valley Regional Trial

Nick David, Extension Potato Agronomist Department of Plant Sciences, North Dakota State University Phone: (701) 231-8732

Technical Support

Mr. Duane Preston – Extension Potato Agronomist, University of Minnesota Mr. Marty Glynn – USDA Potato Research Facility, East Grand Forks, MN Mr. Dennis Olson – USDA Potato Research Facility, East Grand Forks, MN Mrs. Becky Sayre – USDA Potato Research Facility, East Grand Forks, MN Mr. Todd Schutz – USDA Potato Research Facility, East Grand Forks, MN

Site Location

Oberg Farms, Hoople, ND

Site History

2006 - Wheat, 2007 - Wheat, 2008 - Potatoes

Procedures

Seed handling

Seed was stored at 50°F until it was hand cut into 2.0 – 2.5 oz pieces on May 12, 2009. Following cutting, seed was immediately treated with Maxim 4FS and then suberized at 55°F and 95% RH until planting.

Planting and Harvest Operations

Potato seed pieces were planted with an in-row spacing of 9 inches and a between-row spacing of 36" on May 22 using a two-row assist feed Harriston potato planter. Varieties were arranged in a randomized complete block design and replicated four times. A Dark Red Norland seed piece was planted at the beginning and end of each plot as a guard plant to minimize border effects. On September 22, a 1-row Grimme harvester was used to harvest the trial area. Yield and grade was determined immediately following harvest and subsamples for the long-term storage trial were placed in 45 and 50°F storage facilities.

Red River Valley Regional Trial

Yield and size distribution of entries in the 2008 USPB/SFA Chip Trial Hoople, ND

		Y						
Variety/Clone	< 1 ^{7/8″}	1 ^{7/8} - 2 ^{1/4"}	2 ^{1/4} -4"	> 4"	Total	Percent Atlantic	Percent Snowden	
W2324-1	20 def	80 cdefg	273 bcd	0 b	373 bc	105	121	
MSJ036-A	45 ab	143 a	185 de	0 b	372 bc	105	121	
Atlantic	16 def	65 defgh	276 bcd	0 b	355 bcd	100	116	
CO97043-14W	24 def	103 abcde	189 de	0 b	315 bcde	89	103	
Snowden	17 def	86 bcdef	204 cde	0 b	307 bcde	86	100	
NY138	16 def	87 bcdef	198 de	0 b	301 bcde	85	98	
W2310-3	27 cd	99 abcdef	173 ef	0 b	299 bcde	84	97	
W2717-5	27 cd	94 bcdef	170 ef	0 b	290 bcde	82	94	
CO96141-4W	26 de	112 abcd	147 ef	0 b	285 bcde	80	93	
NY139	24 def	86 bcdef	168 ef	0 b	277 bcde	78	90	
ND7519-1	17 def	103 abcde	157 ef	0 b	276 bcde	78	90	
CO97065-7W	28 bcd	102 abcdef	145 ef	0 b	275 bcde	77	90	
Beacon Chipper	15 def	53 fgh	196 de	0 b	263 cde	74	86	
AF2291-10	18 def	72 defgh	170 ef	0 b	260 cde	73	85	
MSJ147-1	60 a	108 abcde	76 f	0 b	243 de	68	79	
CO95051-7W	30 bcd	91 bcdef	78 f	0 b	198 e	56	64	
	p ≤ 0.0001	p ≤ 0.0001	p ≤ 0.0001	p ≤ 0.002	p ≤ 0.0001			

¹Values followed by a different letter within a column are significantly different according to Duncan's multiple comparison.

Wisconsin Regional Trial

Charles J. Kostichka, Superintendent, Hancock Agricultural Research Station Phone: 715-249-5961; E-mail: <u>cjkostic@wisc.edu</u> College of Agricultural and Life Sciences, University of Wisconsin-Madison

Trial Site

Hancock Agricultural Research Station, N3909 CTH V, Hancock, WI 54943

Commercial Chip Processing Cooperator

Frito-Lay, Inc.

Technical Support

Mary LeMere, Hancock Agricultural Research Station Jolyn Rasmussen, Hancock Agricultural Research Station Janice Dukelow, Hancock Agricultural Research Station Margie Kostichka, Hancock Agricultural Research Station

Trial Procedure

Seed was received from trial cooperators during the first two weeks of April, 2008 and held in a locker in the Wisconsin Potato and Vegetable Storage Research Facility at 38°F until cutting. Seed was moved to 55°F to warm two days prior to cutting. Cutting was done by hand on April 18, 2008 with special attention paid to cutting uniform-sized, blocky seed pieces ranging from 2 to 2½ oz in weight. Cut seed was placed in well-ventilated plastic crates and held at 55°F for three days to promote drying and suberization prior to planting. Planting took place on April 21, 2008 using an Iron Age assist-feed planter. Varieties were planted in single-row plots 200 ft. in length. Rows were spaced 36 in. apart. Seed pieces were placed 12 in. apart within each row. Plots were maintained according to standard production practices recommended by the University of Wisconsin (detailed accounting of fertilizer, pesticide and irrigation rates and dates is available from author). Plots were vine-killed on August 29, 2008 (130 days after planting) and harvested into plastic crates using a custom-built Gallenberg plot harvester on September 22, 2008.

Yield Data and Tuber Quality

Tubers were graded and sized using a custom-built Gallenberg grader and Exeter optical sizer. Total yield, U. S. No. 1 yield, undersize and culls are presented in Table 1. U. S. No. 1 size distribution data is presented in Table 2. Following grading eight specific gravity measurements were taken for each variety using a Weltech PW-2050 Dry Matter Assessment System (weight in air/weight in water method). Averaged specific gravity data is presented in Table 3.

Variety	Total Yield	U. S. N	No. 1	<1 7/8 in.	Culls
	(cwt)	(cwt)	(%)	(%)	(%)
AF2291-10	411	390	95	1	4
ATLANTIC	508	486	96	3	1
BEACON CHIPPER	496	461	93	3	4
CO95051-7W	320	287	90	7	3
CO96141-4W	470	437	93	4	3
CO97043-14W	408	379	93	3	4
CO97065-7W	403	374	93	2	5
MSJ036-A	520	481	93	4	4
MSJ147-1	406	354	87	9	3
ND7519-1	541	504	93	5	2
NY138	372	354	95	3	2
NY139	416	395	95	3	3
SNOWDEN	526	498	95	2	3
W2310-3	350	328	94	4	2
W2324-1	618	577	93	2	4
W2717-5	389	352	90	4	5
Culla tuboro pot monting II	C No. 1 stand	arda dua	to out	arnal	

Table 1. Total yield, U. S. No. 1 yield, <1 7/8" and culls, 2008.

Culls = tubers not meeting U. S. No. 1 standards due to external defects.

Table 2. U. S No. 1 size distribution, 2008.

U. S. No. 1 Size Distribution (% of U. S. No. 1 Yield)

	2-4 oz.	4-6 oz.	6-10 oz.	10-13 oz.	13-16 oz.	>16 oz.		
AF2291-10	19	22	35	13	8	3		
ATLANTIC	20	24	37	11	6	2		
BEACON CHIPPER	26	26	37	8	2	0		
CO95051-7W	64	24	11	1	0	0		
CO96141-4W	33	25	34	6	2	1		
CO97043-14W	29	31	34	4	3	0		
CO97065-7W	34	35	31	1	0	0		
MSJ036-A	43	31	25	1	0	0		
MSJ147-1	69	20	10	1	0	0		
ND7519-1	53	31	16	1	0	0		
NY138	40	20	32	6	0	1		
NY139	25	23	40	9	4	1		
SNOWDEN	30	28	36	5	1	0		
W2310-3	41	28	29	2	0	0		
W2324-1	35	27	31	5	2	1		
W2717-5	38	31	27	3	1	0		

Table 3. Specific gravity, 2008

Variety	Specific Gravity
AF2291-10	1.082
ATLANTIC	1.086
BEACON CHIPPER	1.072
CO95051-7W	1.079
CO96141-4W	1.069
CO97043-14W	1.074
CO97065-7W	1.077
MSJ036-A	1.081
MSJ147-1	1.091
ND7519-1	1.086
NY138	1.073
NY139	1.082
SNOWDEN	1.080
W2310-3	1.084
W2324-1	1.083
W2717-5	1.087

Table 4. Internal defects, 2008.

Variety		Int	ernal De	efects (%))
	BC	HH	IBS	VD	SED
AF2291-10	0	0	0	0	0
CO96141-4W	0	0	0	3	0
W2310-3	0	0	3	0	0
SNOWDEN	0	0	0	7	0
CO97043-14W	10	0	0	0	0
NY139	3	0	0	3	0
MSJ147-1	0	3	0	0	0
BEACON CHIPPER	0	0	0	0	0
CO95051-7W	3	0	0	0	0
W2324-1	3	0	0	3	0
W2717-5	0	0	3	0	0
ND7519-1	13	3	10	0	0
MSJ036-A	0	0	0	0	0
ATLANTIC	3	0	0	0	0
NY138	0	0	0	0	0
CO97065-7W	7	0	0	0	0

Internal defects: BC = brown center; HH = hollow heart;

IBS = internal brown spot; VD = vascualr discoloration;

SED = stem end discoloration

	Clone or	Yield (o	wt/acre)	Perc	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	o Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
CA	AF2291-10	254	304	84	15	64	20	2	1.092		
FL	AF2291-10	219	273	80	15	82	2	4	1.091		3.60
ID	AF2291-10	305	400	76	4	44	33	19	1.095		
ME	AF2291-10	303	311	97	5	86	9	0.3	1.085	70.7	
MI	AF2291-10	394	414	95	3	79	17	2	1.078	64.4	1.00
MO	AF2291-10	202	281	72	28	72	0		1.077	69.0	
NC	AF2291-10	256	284	90	8	89	1	2	1.095	66.0	2.00
PA	AF2291-10	204	262	78	5	78	11	6	1.094	51.0	
RRV	AF2291-10	242	260	93	7	93	0	0	1.098	50.0	3.00
WI	AF2291-10	347	411	84	1	84	10	4	1.082		
	average	273	320	85	9	77	10	4	1.089	61.9	2.4
CA	ATLANTIC										
FL	ATLANTIC	285	343	83	12	84	2	3	1.088		3.9
ID	ATLANTIC	489	559	87	4	62	26	9	1.096		
ME	ATLANTIC	361	389	93	10	81	7	3	1.080	69.1	
MI	ATLANTIC	414	443	93	5	80	13	1	1.077	64.9	3.0
MO	ATLANTIC	248	308	80	20	80	0		1.082	67.0	
NC	ATLANTIC	324	375	86	10	85	2	4	1.097	65.3	1.0
PA	ATLANTIC	287	336	85	6	85	3	7	1.096	44.0	
RRV	ATLANTIC	339	355	96	5	96	0	0	1.104	42.0	4.0
WI	ATLANTIC	447	508	88	3	88	8	1	1.086		
	average	355	402	88	8	82	7	4	1.090	58.7	3.0

	Clone or	Yield (c	wt/acre)	Per	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
CA	BEACON CHIPPER	352	396	89	8	43	46	3	1.081		
FL	BEACON CHIPPER	218	290	75	20	76	0	2	1.089		2.9
ID	BEACON CHIPPER	373	399	93	4	70	24	2	1.086		
ME	BEACON CHIPPER	402	424	95	7	71	21	1	1.073	70.3	
MI	BEACON CHIPPER	320	333	96	4	79	17	0	1.072	64.7	3.0
МО	BEACON CHIPPER	269	304	89	11	89	0		1.074	70.0	
NC	BEACON CHIPPER	263	320	82	11	82	0	7	1.093	70.4	2.0
PA	BEACON CHIPPER	237	312	76	4	76	17	4	1.091	47.0	-
RRV	BEACON CHIPPER	248	263	94	6	95	0	0	1.091	61.0	2.0
WI	BEACON CHIPPER	447	496	90	3	90	2	4	1.072		
	average	313	354	88	8	77	13	3	1.082	63.9	2.5
CA	CO95051-7W	251	298	85	15	62	23	1	1.078		
FL	CO95051-7W	171	298	57	38	59	0	2	1.084		4.0
ID	CO95051-7W	357	412	87	12	85	2	1	1.100		
ME	CO95051-7W	283	306	92	11	87	0	3	1.079	68.9	
MI	CO95051-7W	177	210	84	16	83	1	0	1.072	63.4	3.0
MO	CO95051-7W	103	225	46	54	46	0		1.067	67.0	
NC	CO95051-7W	232	288	81	16	80	1	4	1.082	67.7	1.0
PA	CO95051-7W	168	192	87	7	87	2	4	1.090	43.0	
RRV	CO95051-7W	168	198	85	15	85	0	0	1.097	55.0	2.0
WI	CO95051-7W	287	320	90	7	90	0	3	1.079		
	average	220	275	79	19	76	3	2	1.083	60.8	2.5

	Clone or	Yield (c	wt/acre)	Per	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	o Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
СА	CO96141-4W	353	411	86	13	60	26	1	1.072		
FL	CO96141-4W	294	358	82	15	83	1	1	1.075		3.8
ID	CO96141-4W	379	439	86	11	76	10	3	1.086		
ME	CO96141-4W	320	350	91	8	84	5	3	1.076	71.1	
MI	CO96141-4W	410	449	91	5	86	5	4	1.061	66.7	2.0
MO	CO96141-4W	226	315	72	28	72	0		1.062	67.0	
NC	CO96141-4W	315	364	87	11	86	0	3	1.08	70.1	2.0
PA	CO96141-4W	147	183	80	9	80	2	9	1.089	53.0	
RRV	CO96141-4W	259	285	91	9	91	0	0	1.094	64.0	2.0
WI	CO96141-4W	428	470	91	4	91	3	3	1.069		
	average	313	362	86	11	81	5	3	1.076	65.3	2.5
CA	CO97043-14W	286	339	84	15	59	25	1	1.083		
FL	CO97043-14W	243	307	79	15	82	1	4	1.084		3.7
ID	CO97043-14W	432	492	88	10	70	17	2	1.086		
ME	CO97043-14W	314	341	92	6	76	13	5	1.072	69.4	
MI	CO97043-14W	379	402	94	6	86	8	0	1.068	65.2	2.0
MO	CO97043-14W	196	261	75	25	75	0		1.067	69.0	
NC	CO97043-14W	284	347	82	16	81	0	2	1.085	70.4	2.0
PA	CO97043-14W	271	324	84	7	84	4	5	1.089	50.0	
RRV	CO97043-14W	291	315	92	8	93	0	0	1.093	68.0	1.0
WI	CO97043-14W	371	408	91	3	91	3	4	1.074		
	average	307	354	86	11	80	7	3	1.080	65.3	2.2

Table 3 Continued: Overall average yield percent size distribution and culls, specific gravity and out of field

	Clone or	Yield (c	wt/acre)	Per	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	o Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
CA	CO97065-7W	253	325	78	21	61	17	2	1.086		
FL	CO97065-7W	242	314	70	18	77	0	1	1.088		3.5
ID	CO97065-7W	278	358	78	21	77	1	1	1.086		0.0
ME	CO97065-7W	279	349	80	8	76	0	17	1.077	69.1	
MI	CO97065-7W	363	408	89	10	89	0	1	1.079	64.4	3.0
MO	CO97065-7W	228	280	82	18	82	0	•	1.075	67.0	
NC	CO97065-7W	265	304	87	10	87	0	2	1.096	71.2	2.0
PA	CO97065-7W	107	144	75	8	75	2	15	1.092	49.0	
RRV	CO97065-7W	247	275	90	10	90	0	0	1.096	64.0	2.0
WI	CO97065-7W	378	403	94	2	94	0	5	1.077		
	average	264	316	83	13	81	2	5	1.085	64.1	2.6
CA	MSJ036-A	208	313	66	32	59	7	2	1.085		
FL	MSJ036-A	302	361	84	14	84	1	2	1.087		4.3
ID	MSJ036-A	413	495	83	14	80	4	3	1.096		
ME	MSJ036-A	381	412	93	11	86	2	0.4	1.075	68.7	
MI	MSJ036-A	465	512	91	9	90	1	0	1.078	60.5	4.0
MO	MSJ036-A	58	124	47	53	47	0		1.068	63.0	
NC	MSJ036-A	306	355	86	12	86	0	2	1.086	70.4	2.0
PA	MSJ036-A	228	266	86	12	86	0	2	1.093	47.0	
RRV	MSJ036-A	327	372	88	12	88	0	0	1.093	51.0	3.0
WI	MSJ036-A	481	520	93	4	93	0	4	1.081		
	average	317	373	82	17	80	2	2	1.084	60.1	3.3

	Clone or	Yield (c	wt/acre)	Per	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
CA	MSJ147-1	99	245	40	58	36	5	1	1.092		
FL	MSJ147-1	108	256	42	52	43	0	1	1.091		2.6
ID	MSJ147-1	285	376	76	23	73	3	2	1.104		
ME	MSJ147-1	174	198	88	20	80	0	0.5	1.078	69.3	-
MI	MSJ147-1	254	336	76	24	76	0	1	1.089	62.4	2.0
MO	MSJ147-1	50	189	26	74	26	0		1.079	67.0	
NC	MSJ147-1	83	205	40	60	40	0	0	1.098	60.9	2.0
PA	MSJ147-1	149	211	71	28	71	0	1	1.092	48.0	
RRV	MSJ147-1	183	243	75	25	76	0	0	1.095	67.0	1.0
WI	MSJ147-1	354	406	87	9	87	0	3	1.091		
	average	174	267	62	37	61	1	1	1.091	62.4	1.9
CA	ND7519-1	255	379	67	30	59	9	3	1.083		
FL	ND7519-1	242	330	74	22	73	1	1	1.090		2.8
ID	ND7519-1	315	414	76	19	73	3	5	1.095		
ME	ND7519-1	326	384	85	13	79	0	9	1.083	70.8	
MI	ND7519-1	350	381	92	7	90	2	1	1.079	64.0	1.0
MO	ND7519-1	152	293	52	48	52	0		1.081	71.0	
NC	ND7519-1	276	337	82	17	81	0	1	1.103	68.9	1.0
PA	ND7519-1	199	249	80	17	80	0	3	1.095	44.0	
RRV	ND7519-1	259	276	94	6	94	0	0	1.099	65.0	1.0
WI	ND7519-1	509	541	94	5	94	0	2	1.086		
	average	288	358	80	18	78	2	3	1.089	64.0	1.5

	Clone or	Yield (c	wt/acre)	Perc	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	o Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
CA	NY138	358	395	91	8	37	54	2	1.082		
FL	NY138	244	395	81	15	80	2	2	1.082		3.6
ID	NY138	410	470	87	10	80	7	3	1.085		5.0
ME	NY138	388	416	93	5	87	4	4	1.085	70.4	
MI	NY138	504	525	95	4	79	17	4	1.066	69.0	1.0
MO	NY138	191	236	81	19	81	0	1	1.000	64.0	1.0
NC	NY138	261	284	92	8	91	1	1	1.082	70.2	3.0
PA	NY138	201	229	87	9	87	0	3	1.093	56.0	0.0
RRV	NY138	285	301	95	5	95	0	0	1.086	62.0	2.0
WI	NY138	347	372	93	3	93	1	2	1.073	02.0	2.0
	average	319	353	90	9	81	9	2	1.079	65.3	2.4
CA	NY139	409	446	92	7	52	39	1	1.089		
FL	NY139	214	259	82	11	84	4	4	1.083		4.8
ID	NY139	393	462	85	12	84	2	3	1.095		
ME	NY139	259	278	96	6	90	2	2	1.076	71.1	
MI	NY139	521	542	96	3	88	8	1	1.082	62.2	3.0
MO	NY139	153	217	71	30	71	0		1.065	69.0	
NC	NY139	278	308	90	7	90	0	2	1.09	70.5	2.0
PA	NY139	257	302	85	8	85	2	5	1.094	42.0	
RRV	NY139	253	277	91	9	92	0	0	1.094	62.0	2.0
WI	NY139	383	416	92	3	92	5	3	1.082		
	average	312	351	88	10	83	6	2	1.085	62.8	3.0

Table 2 Continued, Overall a viald no nt cizo distribution alfia vity and out of field

	Clone or	Yield (c	wt/acre)	Per	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
CA	SNOWDEN										
FL	SNOWDEN	333	402	83	14	85	0	3	1.086		3.4
ID	SNOWDEN	333	449	74	25	71	4	1	1.092		
ME	SNOWDEN	390	406	94	10	89	0	1	1.085	70.8	
MI	SNOWDEN	569	598	95	4	85	10	1	1.081	61.3	2.0
MO	SNOWDEN	180	249	72	28	72	0		1.077	68.0	
NC	SNOWDEN	261	315	83	17	83	0	0	1.094	64.5	2.0
PA	SNOWDEN	291	362	80	16	80	1	3	1.099	50.0	
RRV	SNOWDEN	290	307	95	6	94	0	0	1.094	48.0	2.0
WI	SNOWDEN	493	526	94	2	94	1	3	1.080		
	average	349	402	86	14	84	2	2	1.088	60.4	2.4
CA	W2310-3	281	319	88	10	61	27	2	1.092		
FL	W2310-3	199	268	74	21	75	0	3	1.091		3.5
ID	W2310-3	477	540	88	6	83	6	5	1.096		
ME	W2310-3	273	286	95	8	91	0	1	1.075	71.1	
MI	W2310-3	401	432	93	6	91	2	2	1.080	62.7	2.0
MO	W2310-3	152	231	66	34	66	0		1.079	70.0	
NC	W2310-3	256	293	87	11	87	0	1	1.094	65.3	2.0
PA	W2310-3	188	218	86	11	86	0	2	1.099	46.0	
RRV	W2310-3	272	299	91	9	91	0	0	1.094	65.0	1.0
WI	W2310-3	328	350	94	4	94	0	2	1.084		
	average	283	324	86	12	83	4	2	1.088	63.4	2.1

	Clone or	Yield (c	wt/acre)	Perc	cent Grad	de and Size	Distribu	tion	Specific	Field Chip	Color
State	Variety	No. 1	Total	No. 1	Small	Mid-Size	Large	Culls	Gravity	Agtron	SFA
CA	W2324-1	287	393	73	18	49	24	9	1.084		
FL	W2324-1	275	314	88	8	84	6	3	1.089		3.4
ID	W2324-1	482	565	85	6	65	20	9	1.095		
ME	W2324-1	436	463	94	4	90	3	3	1.080	69.8	
MI	W2324-1	555	604	92	5	77	14	3	1.078	60.7	3.0
МО	W2324-1	225	312	72	28	72	0		1.071	69.0	
NC	W2324-1	333	376	89	10	88	1	1	1.09	64.5	2.0
PA	W2324-1	306	347	88	9	88	0	3	1.099	47.0	-
RRV	W2324-1	353	373	95	5	95	0	0	1.096	53.0	3.0
WI	W2324-1	565	618	91	2	91	3	4	1.083		
	average	382	437	87	10	80	7	4	1.087	60.7	2.9
			0.40								
CA	W2717-5	143	248	58	40	47	10	2	1.090		
FL	W2717-5	244	312	78	16	82	1	5	1.101		4.8
ID	W2717-5	242	331	73	22	63	10	5	1.091		
ME	W2717-5	24.0	054		0	00	0	0	4.005	00.4	0.0
MI	W2717-5	318	354	90	9	88	2	2	1.085	63.1	2.0
MO	W2717-5	198	273	73	27	73	0	4	1.083	69.0	1.0
NC	W2717-5	229	264	87	9	87	0	4	1.095	70.8	1.0
PA	W2717-5	106	152	70	5	70	7	18	1.099	45.0	20
RRV WI	W2717-5 W2717-5	263 348	290 389	91 90	9 4	91 90	0	0 5	1.107	62.0	2.0
VVI	average	232	389 290	90 79	4 16	90 77	3	5 5	1.0 87	62.0	2.5

Table 2 Continued: Overall a viald par nt ciza distribution alfia a vity and out of field

		-	ar avera from 200	-		en reg	ional L	JPS-SF	A trial si	tes for	
		Yield (c	wt/acre)	Perce	nt Grade	and Si	ze Distri	bution	Specific	Field Ch	ip Color
State	Year	No. 1	Total	No. 1	Small	Med.	Large	Culls	Gravity	Agtron	SFA
CA	2008	352	396	89	8	43	46	3	1.081		
FL	2006	310	366	75	20	76	0	2	1.089		2.9
FL	2007	254	286	93	4	70	24	2	1.086	70.0	
FL	2008	218	290	95		71	21	1	1.073	70.3	2.0
Č	average	261	314	88	10	72	15	2	1.083	70.3	2.9
ID	2006	376	413	96	4	79	17	0	1.072	64.7	3.0
ID	2007	393	459	89	. 11	89	0	0	1.074	70.0	0.0
ID	2008	373	399	82	11	82	0	7	1.093	70.4	2.0
ć	average		424	89	9	83	6	4	1.080	68.4	2.5
ME	2006	308	352	76	4	76	17	4	1.091	47.0	
ME	2007	220	279	94	6	95	0	0	1.091	61.0	2.0
ME	2008	402	424	90	3	90	2	4	1.072		
á	average	310	352	87	4	87	6	3	1.085	54.0	2.0
	0000	070	004				_		4 004		
MI	2006	378	391	91	8	90	1	2	1.081		2.0
MI	2007	585	600	79	0.7	79	17	3	1.068	40.0	
MI	2008	320	333	90	4 4	90	1 6	4	1.072	49.0	2.0
č	average	428	441	87	4	86	0	3	1.074	49.0	2.0
МО	2008	269	304	97	2	79	18	1	1.077	68.0	1.0
	2000	200		0.	_			•		00.0	
NC	2006	378	443	82	2.7	84	12	2	1.092	68.0	1.0
NC	2007	307	333	86	12	76	9	3	1.089		1.2
NC	2008	263	320	92	4	86	6	4	1.080		2.0
á	average	316	365	87	6	82	9	3	1.087	68.0	1.4
PA	2006	262	309	62	38	62	0	na	1.079	69.0	
PA	2007	277	309	65	35	65	0	na	1.064	66.0	
PA	2008	237	312	64	37	64	0	na	1.071	68.0	
č	average	259	310	64	37	64	0		1.071	67.7	
RRV	2006	225	242	96	2	96	0	2	1.069		
RRV	2000	204	242	91	8	91	0	7	1.088	67.0	
RRV	2007	248	263	88	4	72	16	9	1.073	68.2	
	average		251	92	5	86	5	6	1.077	67.6	
		-								_	
ТΧ	2006	232	265	93	2.7	84	12	2	1.080	62.0	
ТΧ	2007	121	190	88	13	88	0	na	1.076	72.0	
ć	average	177	228	90	8	86	6	2	1.078	67.0	
WI	2006	385	433	88	12	88	0	na	1.083	72.0	
WI	2007	454	474	88	12	88	0	na	1.080	72.0	
WI	2008	447	496	89	1	89	7	3	1.075	72.5	
	average		468	88	8	88	2	3	1.079	72.2	4.0
overal	i avg.	297	339	86	9	80	9	3	1.080	65.7	1.9

			ar avera n 2006 te			en reg	ional L	JPS-SF	A trial si	tes for	
		Yield (c	wt/acre)	Perce	nt Grade	e and Si	ibution	Specific	Field Ch	ip Color	
State	Year	No. 1	Total	No. 1	Small	Med.	Large	Culls	Gravity	Agtron	SFA
CA	2008	251	298	85	15	62	23	1	1.078		
								-			
FL	2006	286	345	57	38	59	0	2	1.084		4.0
FL	2007	298	365	87	12	85	2	1	1.100	<u> </u>	
FL	2008	171	298	92	11	87	0	3	1.079	68.9	4.0
č	average	252	336	79	20	77	1	2	1.088	68.9	4.0
ID	2006	352	420	84	16	83	1	0	1.072	63.4	3.0
ID	2007	387	460	46	54	46	0	0	1.067	67.0	0.0
ID	2008	357	412	81	16	80	1	4	1.082	67.7	1.0
	verage		431	70	29	70	1	2	1.074	66.0	2.0
ME	2006	150	201	87	7	87	2	4	1.090	43.0	
ME	2007	215	225	85	15	85	0	0	1.097	55.0	2.0
ME	2008	283	306	90	7	90	0	3	1.079		
a	average	216	244	87	10	87	1	2	1.089	49.0	2.0
MI	2006	292	322	83	15	83	0	2	1.070		4.0
MI	2007	238	279	96	5	96	0	0	1.074		
MI	2008	177	210	87	9	87	0	4	1.068	41.0	
â	average	236	270	89	10	89	0	2	1.071	41.0	4.0
МО	2008	103	225	85	15	85	0	0	1.074	64.0	2.0
NO	2000	103	220	00	15	00	0	0	1.074	04.0	2.0
NC	2006	269	324	86	9	88	1	3	1.107	69.0	1.0
NC	2007	263	293	84	14	84	0	2	1.101	00.0	1.5
NC	2008	232	288	90	8	89	1	2	1.074		2.0
	average		302	87	10	87	1	2	1.094	69.0	1.5
PA	2006	115	155	59	42	59	0	na	1.086	72.0	
PA	2007	165	189	62	38	62	0	na	1.066	68.0	
PA	2008	168	192	61	40	61	0	na	1.076	70.0	
a	average	149	179	61	40	61	0		1.076	70.0	
		4.00	470	-					4 000		
RRV	2006	162	176	90	9	90	0	2	1.082	07.0	
RRV RRV	2007	162	189	87 83	13 12	87	0	4	1.082	67.6 66.5	
	2008	168	198 188	83 87	12	82	0 0	6 4	1.077 1.080	66.5 67.1	
č	average	164	100	0/	11	86	U	4	1.000	07.1	
ΤХ	2006	159	241	92	4	91	3	2	1.088	62.0	
TX	2000	133	217	66	34	66	0	na	1.075	72.0	
	average		229	79	19	79	2	2	1.082	67.0	
•											
WI	2006	388	426	66	34	66	0	na	1.078	72.0	
WI	2007	351	391	66	34	66	0	na	1.077	72.0	
WI	2008	287	320	91	4	91	1	4	1.082	66.2	
a	average	342	379	74	24	74	0	4	1.079	70.1	
overal	avg.	224	278	80	18	79	1	3	1.087	64.5	2.0

		-	ar avera 006 to 2	-	er elev	en reg	jional L	JPS-SF	A trial si	tes for	
		Yield (c	wt/acre)	Perce	nt Grade	e and Si	ze Distri	ibution	Specific	Field Ch	ip Color
State	Year	No. 1	Total	No. 1	Small	Med.	Large	Culls	Gravity	Agtron	SFA
CA	2008	99	245	40	58	36	5	1	1.092		
FL	2006	317	356	42	52	43	0	1	1.091		2.6
FL	2008	185	272	76	23	43 73	3	2	1.104		2.0
FL	2007	105	272	88	23	80	0	1	1.078	69.3	
											2.0
č	average	203	295	69	32	65	1	1	1.091	69.3	2.6
ID	2006	306	418	76	24	76	0	1	1.089	62.4	2.0
ID	2007	232	403	26	74	26	0		1.079	67.0	
ID	2008	285	376	40	60	40	0	0	1.098	60.9	2.0
á	average	274	399	47	53	47	0	1	1.089	63.4	2.0
ME	2006	172	207	71	28	71	0	1	1.092	48.0	
ME	2000	107	134.5	75	25	76	0	0	1.095	67.0	1.0
ME	2008	174	198	87	9	87	0	3	1.091	0110	
	average	151	180	78	21	78	0	1	1.093	57.5	1.0
N 41	0000	044	070			07		4	4 000		0.0
MI	2006	311	379	68	29	67	1	1	1.083		2.0
MI	2007	184	259	80	20	80	0	0	1.073	40.0	
MI	2008	254	336	65	32	65	0	3	1.078	46.0	
ĉ	average	250	325	71	27	71	0	1	1.078	46.0	2.0
MO	2008	50	189	71	29	71	0	0	1.085	59.7	2.0
NC	2006	322	381	77	18	80	0	2	1.102	69.0	1.0
NC	2008	177	234	58	33	57	1	9	1.099	09.0	1.1
NC	2007	83	205	76	22	77	0	2	1.033		2.0
	average		2 03 273	70	22	71	0	4	1.091	69.0	1.4
c	average	134	215	70	24	<i>,</i> ,	U	4	1.054	03.0	1.4
PA	2006	233	302	10	90	10	0	na	1.089	70.0	
PA	2007	142	219	8	92	8	0	na	1.069	70.0	
PA	2008	149	211	9	91	9	0	na	1.079	70.0	
â	average	175	244	9	91	9	0		1.079	70.0	
RRV	2006	172	206	84	14	84	0	1	1.082		
RRV	2000	163	200	90	9	90			1.090	70.0	
RRV	2007	183	243	83	15	82	0	1	1.090	69.7	
	average		220	86	13	85	1	1	1.081	69.9	
TX	2006	207	267	84	9	80	7	4	1.082	70.0	
ТΧ	2007	11	124	79	21	79	0	na	1.082	72.0	
ć	average	109	196	81	15	80	3	4	1.082	71.0	
WI	2006	382	449	77	23	77	0	na	1.078	72.0	
WI	2007	286	339	78	22	78	0	na	1.080	72.0	
WI	2008	354	406	85	7	85	1	6	1.083	69.8	
	verage		398	80	17	80	0	6	1.080	71.3	
overal	avg.	190	269	66	32	66	1	2	1.085	65.7	1.6

		-	ar avera 06 to 20	-	er elev	en reg	ional L	JPS-SF	A trial si	tes for	
		Yield (cwt/acre) Percent Grade and Size Distribution								Field Chip Color	
State	Year	No. 1	Total	No. 1	Small	Med.	Large	Culls	Gravity	Agtron	SFA
CA	2008	287	393	73	18	49	24	9	1.084		
					_		_		4 0 0 0		~ .
FL	2006	359	413	88	8	84	6	3	1.089		3.4
FL	2007	365	388	85	6	65	20	9	1.095	<u> </u>	
FL	2008	275	314	94	4	90	3	3	1.080	69.8	0.4
č	average	333	372	89	6	80	10	5	1.088	69.8	3.4
ID	2006	601	670	92	5	77	14	3	1.078	60.7	3.0
ID	2007	570	667	72	28	72	0		1.071	69.0	0.0
ID	2008	482	565	89	10	88	1	1	1.090	64.5	2.0
	average		634	84	14	79	5	2	1.080	64.7	2.5
							-				
ME	2006	178	310	88	9	88	0	3	1.099	47.0	
ME	2007	315	354	95	5	95	0	0	1.096	53.0	3.0
ME	2008	436	463	91	2	91	3	4	1.083		
â	average	310	376	91	5	91	1	2	1.093	50.0	3.0
MI	2006	488	515	96	3	88	8	2	1.082		4.0
MI	2007	564	598	89	4	89	8	0	1.078		
MI	2008	555	604	79	4	79	2	15	1.082	39.0	
â	average	536	572	88	4	85	6	6	1.081	39.0	4.0
МО	2008	225	312	95	3	82	13	2	1.081	62.9	2.0
WO	2000	225	512	35	5	02	15	2	1.001	02.3	2.0
NC	2006	461	521	91	4	93	1	2	1.099	58.0	2.0
NC	2007	335	383	85	. 11	77	9	3	1.092	00.0	1.3
NC	2008	333	376	87	10	86	2	3	1.080		3.0
	average		427	88	8	85	4	3	1.090	58.0	2.1
PA	2006	351	408	60	40	60	0	na	1.091	68.0	
PA	2007	258	326	60	40	60	0	na	1.083	68.0	
PA	2008	306	347	60	40	60	0	na	1.087	68.0	
ć	average	305	360	60	40	60	0		1.087	68.0	
RRV	2006	296	328	93	2	93	1	5	1.082		
RRV	2000	302	334	93	6	93 87	7	5	1.082	64.1	
RRV	2007	353	373	57	2	48	10	41	1.072	69.8	
	average		345	81	3	76	6	17	1.078	67.0	
					-		-				
ΤХ	2006	257	305	90	4	89	4	3	1.086	62.0	
ТΧ	2007	147	246	88	12	88	0	na	1.078	72.0	
á	average	202	276	89	8	88	2	3	1.082	67.0	
WI	2006	433	656	81	19	81	0	na	1.083	72.0	
WI	2007	530	569	84	16	84	0	na	1.081	72.0	
WI	2008	565	618	66	2	66	2	29	1.082	69.2	
	average		614	77	12	77	1	29	1.082	71.1	
overal	avg.	357	421	84	11	80	5	6	1.085	63.4	2.4

OUT-OF-STORAGE CHIPPING EVALUATIONS

DATA FROM 2007 AND 2008 TRIALS

Idaho Maine Michigan Pennsylvania Red River Valley Wisconsin

	Out of Storage Quality Report										
	6 week cool down 6 weeks storage		3 week recondition								
CLONE	Chip 40	Chip 50	Chip 40	Percent Sugar Ends	Processing Defects						
MSJ147-1	2.9	1.1	1.4	3	hollow heart						
CO96141-4W	4.1	1.3	2.9	30	mottling, bruise						
CO95051-7W	3.3	1.1	1.9	15							
BEACON											
CHIPPER	3.3	1.0	2.5	18							
SNOWDEN	4.4	1.5	2.0	48							
W2133-1	4.2	1.4	1.7	3							
ATLANTIC	3.7	1.8	2.8	50							
MSJ316-A	3.6	1.4	1.9	5							
W2324-1	3.9	1.5	3.0	30	dark vascular						

Samples harvested September 25 and gradually cooled to 50°.

Samples stored at 40 and 50° for 6 weeks.

Samples reconditioned at 60° for 3 weeks.

Maine Regional Trial

OUT OF 52F STORAGE CHIP FRY DATA - 2007 CROP

Variety	Condition	SFA Fry Color ¹	USDA Color ²	Defects (%) Internal & External
Atlantic	Firm	2+	3	I = 4 BS
				E = 1
Snowden	Firm	1-	2	I = 2 VR
				E = 0
AF2291-10	Firm	2+	2	I = 4 VR, PAD
				E = 0 Blister Chips
MSJ316-A	Firm	1-	3	I = 2 VR
				E = 0
MSJ147-1	Fairly Firm PB	2-	5	I = 4 BS
				E = 2 DPS Blistering
Beacon Chipper	Firm	2+	3	I = 6 VR, BS
				E = 2 Fusarium
CO96141-4W	Firm	1-	2	I = 0 Slight Blistering
				E = 0 Bright, Exc. Fresh potential
CO95051-7W	Fairly Firm PB	2+	4	I = 1 VR Blistering
				E = 2 SS
W2324-1	Fairly Firm PB	3	5	I = 8 VR, PAD Blistering
				E = 2 DPS
W2133-1	Firm Heavy SS	2-	5	I = 6 VR, PAD
				E = 4 SS

Defect Key

¹ = SFA rating scale from Wilbur Gould Text

Date Stored:Sept. 28, 2007Date Removed:April 28, 2008Date Processed:May 6, 2008Processed at:Bio-Ag Research Laboratory

 2 = ARS Handbook # 267, pp 58

BS = Black Spot VR = Vascular Ring DPS = Deep pitted scab PB = Pressure bruise FUS = Fusarium dry rot PAD = Pith area darkening SS = Silver Scurf

OUT OF STORAGE CHIP FRY TEST RESULTS 2008 USPB-SFA CHIP VARIETY TRIAL MAINE

Overview: Potato varieties were harvested and stored at the Dale Turner Farm in Washburn, Maine on September 13, 2008. The Samples were placed in Jute bags and co-mingled into a bin of Russet Burbank variety potatoes being held for French fry manufacture. Samples were held in storage at 48 to 50 degree F. and 90 percent RH until February when the bin was emptied for French fry processing. Samples were transferred to 55 degree storage at Aroostook Research Farm in Presque Isle and held until April 12, 2009. Samples were transferred to Bio-Ag Research Laboratory and were fried on April 22, 2009 following two weeks conditioning at room temperature.

Tuber samples were washed, sliced and fried in 100 percent corn oil for 3 minutes at 375 degrees F. Chip slices were evaluated for color using the SFA Chip Fry Chart and the USDA color chart as published in the USDA Agricultural Handbook, "Commercial Potato Production".

	SFA	U.S.D.A.	Chip Def	ects	
VARIETY	Chip Fry Chart	1-10 Fry Chart	External	Internal	
1. Atlantic	2	4	0	3 dp	
2. Snowden	2+	3	1	3 vr	
3. AF 22?	1	6	1	10 dao	
4. MSJ 147-1	2+	4	2 bs	1	
5. MSJ 036-A	1	7	1	15 dao	
6. Beacon Chip	1	6	1	8 vr	
7. NY 138	3	2	0	3 vr	
8. NY 139	3++	2	0	0	
9. ND 7519-1	3	2	0	0	
10. W2324-1	2	5	2	8 dao	
11. W2310-3	3++	1	1	0	
12. CO97043-14	3	2	0	0	
13. CO95051-7W	3	2	0	0	
14. Sample lost 1n storage	2				
15. CO97065-7W	1	6	2 bs	8 dao	

RESULTS: 2008 SFA/NPPB OUT-OF-STORAGE CHIP VARIETY TRIAL FRY TEST

Defect Code: dao = dark all over

vr = Vascular Ring

dp = Dark Pith

bs = Black spot

Prepared by: Ed Plissey, Bio Ag Research Machiasport, ME 04655 <u>Bioag97@aol.com</u>

OUT-OF-STORAGE CHIP QUALITY 2007-2008 MICHIGAN REGIONAL REPORT

Chris Long, Michigan State University

Procedure:

The 2007 USPB / SFA Chip Trial was harvested on October 4, 2007 at Sandyland Farms LLC, Howard City, MI. Several chip storage samples were collected from each variety at harvest. Two 40 pound samples were collected from each entry and placed in the cooperating grower's commercial storage for evaluation in January and March of 2008 at Herr Foods, Nottingham PA. The 40 pound tuber samples placed in the grower's commercial storage were removed from storage in late January 2008 with a pile temperature of 54 °F and in March 2008 with a pile temperature of 48 °F. For sprout control, CIPC was applied in the storage in November 2007.

Eighteen, 30 tuber samples were also collected from each trial entry at harvest and stored in two cold storages at the Michigan Potato Industry Commission's (MPIC), Cargill Potato Demonstration Storage Facility. One set of nine samples were stored at approximately 54°F for monthly evaluation, October through June. The remaining nine, 30 tuber samples were stored at approximately 48°F to be evaluated during this same time period. These samples from the MPIC storage were processed at Techmark Inc. for a glucose value (a percent by fresh weight), a sucrose rating (a percent by fresh weight X10), an SFA color score and an undesirable chip color score. The undesirable chip color score is reported as a percentage, by weight, of the total chips that were evaluated. For sprout control, CIPC was applied in the MPIC storages in late October 2007.

Results:

Tables 1 and 2 summarize the chip quality of the 40 pound samples after being processed at Herr Foods, Inc. on January 30th and March 26th, 2008. The varieties are listed in yield order high to low, top to bottom based on the 2007 field trial data. As seen in Table 1, Herr Foods rated Beacon Chipper as having the best all around chip quality from these storage samples on this date. MSJ147-1 exhibited the least amount of tuber defects and the highest specific gravity of any line in the group.

From Table 2, W2133-1 appears to have the best overall chip quality appearance and highest specific gravity at this point in storage. Some concerns have been raised that this variety masks PVY expression. MSJ147-1 and CO95051-7W both appeared to have excellent Agtron numbers, as well as, low internal defect scores. Yield and overall agronomic productivity of these lines needs to be weighed with the benefit of the late season chip quality exhibited here.

Tables 3-38 summarize the 30 tuber chip quality samples collected at harvest from each entry and stored at the MPIC demonstration storage in the fall of 2007 at two temperatures. Two graphs are provided for each line at each temperature for a total of four graphs per line. The first graph in each temperature is the sugar concentration and average pile temperature curve, showing the relationship of the bin temperature on physiological age and chip quality of the variety. The second graph shows the change in SFA chip color and sugar related color defects over time in storage at the given temperature regime. The varieties are again reviewed in yield order, high to low, top to bottom.

<u>Beacon Chipper:</u> Table 3 indicates that Beacon Chipper at 54 °F lost its dormancy quickly and consequently its chip quality declined after three months in storage. Sucrose rose quickly at the end of January, followed by an increase in glucose in mid-February. This rise in sugar levels was observed in the decline in chip quality (Table 4). This line appeared to store longer at 48 °F with no negative impact to sugar concentration as a result of being cooled (Table 5). The storage life of this potato was more than doubled by storing the variety at 48 °F. The chip quality of Beacon Chipper, when stored at 48 °F, appeared to be good into early May (Table 6).

<u>W2324-1:</u> This line selection, when stored at 54 °F, appeared to be stable until mid-February at which time the variety began to lose dormancy (Table 7). In early March, chip quality began to change as sugar related defects increased to almost 10 percent (Table 8). The colder storage temperature (48 °F) did delay the rise in sucrose, but it was apparent that some physiological changes were beginning to occur in late March that brought about a rise in glucose (Table 9). This rise in glucose did not drastically impact the SFA color score, but can be seen in the increase in sugar related defects (Table 10).

<u>Snowden:</u> Snowden had a predictable response, as it stored to late February when held at 54 °F (Tables 11-12). When subjected to it's standard storage protocol of being stored at 48 °F, this variety was able to be stored acceptably into mid-April (Tables 13-14).

<u>Atlantic:</u> The objective of this sugar profiling study was to look for long term storage performance in new varieties. Atlantic, not being a storage potato, was only sampled for a few months to save money on sampling costs.

<u>W2133-1:</u> This line, when stored at 54 °F, maintained relativly low sucrose and glucose values until early May at which point the SFA and sugar related defect levels rose to unacceptable levels (Tables 19-20). When W2133-1 was stored at 48 °F the sugar quality and subsequent chip quality remained excellent into early June (Tables 21-22). This data is consistent with that from Herr Foods in Table 2 which ranked W2133-1 the best overall for chip quality in March of 2008.

<u>CO96141-4W</u>: Table 23 shows CO96141-4W increasing sucrose levels steadily from mid February to late May. Sugar levels began to negatively impact chip quality in early June (Table 24). The 48 °F storage temperature kept the sucrose levels lower throughout the storage season resulting in a slight improvement in chip quality (Tables 25-26). Overall, this variety stored quite well based on this set of sugar data.

<u>MSJ316-A:</u> This line did not handle the warmer storage temperature of 54 °F well. The sucrose level rose quickly after the first of February, resulting in a high level of sugar related defects accumulating in the finished chips, beginning in early March and lasting for the remainder of the storage season (Tables 27-28). The cooler storage temperature helped slow the physiological aging of the potatoes and stabilized glucose accumulation (Table 29). Table 30 shows that the variety maintained a good SFA color overall through the storage season, but there appeared to be some variability in the sugar related defects of MSJ316-A.

<u>CO95051-7W:</u> This variety, at both 54 °F and 48 °F, steadily increased sucrose levels from early March to early June with little or no impact on increasing glucose levels (Tables 31 and 33). Tables 32 and 34 show little, if any, sugar related chip defects for this variety throughout the storage season. This variety was not a top agronomic performer based on large scale commercial trials, but has excellent chip quality late out of cold storage.

<u>MSJ147-1</u>: This variety performed very well in storage at both 54 °F and 48 °F into June. At 54 °F the sucrose levels rose steadily from March through June, but had little impact on glucose concentration (Table 35). Table 36 depicts the excellent chip quality that was evident from this line. The cooler storage, once again, reduced the aging process while having no negative impact on glucose levels (Table 37). MSJ147-1 exhibited a little higher level of sugar related defects being noted in the finished chips (Table 38). Overall, this variety had very nice chip quality late out of storage.

	Agtron	SFA ²	Specific	Perce	nt Chip Dei	ects ³	_
Entry	Color	Color	Gravity	Internal	External	Total	Comments
Beacon Chipper	65	1.0	1.078	1.5	9.7	11.2	nice chip color, a few shaded, externals good overall, a few pitted and surface scab, nice grade, some oversize
W2324-1	61.3	2.0	1.079	5.6	14.4	20.0	light shading, light pitted scab, nice size
Snowden	61.8	1.0	1.078	0.8	17.5	18.3	nice chip color, pitted scab, a few stem end browning, nice size
Atlantic	60.5	2.5	1.078	23.1	12.5	35.6	hollow heart, poor chip color, pitted scab, oversize
W2133-1	64.4	1.0	1.080	4.3	9.0	13.3	nice chip color, pitted scab, light bruise, good size
CO96141-4W	64.3	1.5	1.069	5.1	2.0	7.1	nice chip color, a few stem end and vascular browning, ligh pitted scab, low gravity, oversize
MSJ316-A	65.7	1.0	1.073	5.5	2.3	7.8	nice chip color, a few surface scab, a few oversize, low gravity
CO95051-7W	60.6	1.5	1.080	1.5	4.8	6.3	a few shaded chips, nice externals, small grade
MSJ147-1	59.4	1.0	1.083	0.5	3.5	4.0	nice chip color, nice externals, too small

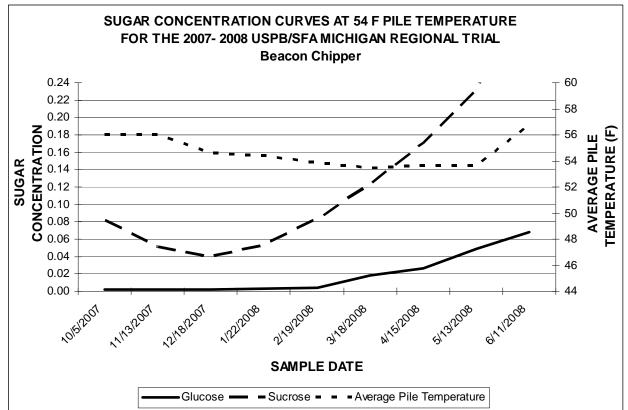
SFA Color: 1 = lightest, 5 = darkest

Г

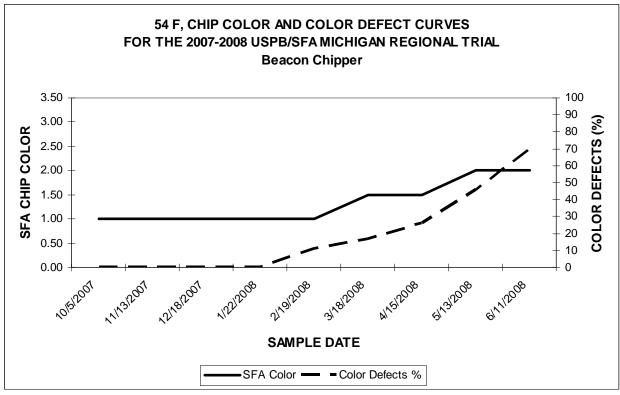
SFA COIDI. I = lightest, 5 = darkest

³ Percent Chip Defects are a percentage by weight of the total sample; comprised of undesirable color, greening, internal defects and external defects.

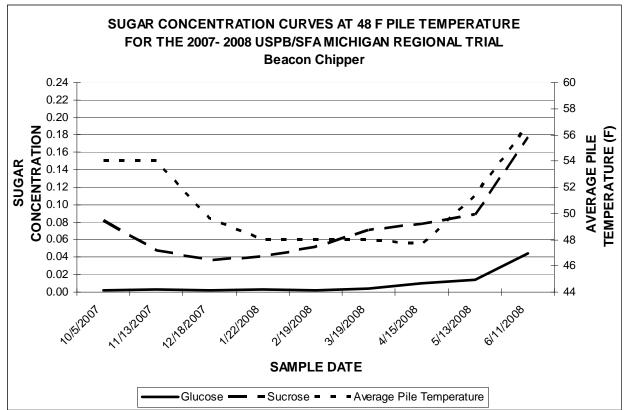
	Agtron	SFA ²	Specific	Perce	ent Chip Def	ects ³	_
Entry	Color	Color	Gravity	Internal	External	Total	Comments
Beacon Chipper	55.5	4.0	1.081	62.2	0.0	62.2	poor chip color, large grade 4"+, very nice externals
W2324-1	55.8	3.0	1.090	25.9	11.6	37.5	poor chip color, light surface/pitted scab, nice grade
Snowden	61.5	1.5	1.078	20.5	10.6	31.1	a few hollow heart, good chip color, light scab, 2 green, large grade, some 4"
Atlantic	56.9	3.5	1.089	31.1	14.5	45.6	poor chip color, surface & pitted scab, large grade to 4"
W2133-1	60.4	1.0	1.091	3.6	10.3	13.9	nice chip color, a few light scab, nice grade
CO96141-4W	58	2.5	1.078	15.7	8.4	24.1	shading in some chips, light scab, 4 green, large grade 4"
MSJ316-A	59.5	1.0	1.085	7.8	6.0	13.8	nice chip color, a few hollow heart, nice externals, nice grade
CO95051-7W	60.5	1.0	1.086	2.2	6.3	8.5	nice chip color, light surface scab, small grade
MSJ147-1	60.7	1.0	1.089	2.9	3.0	5.9	nice chip color, nice externals, too many 2" and under

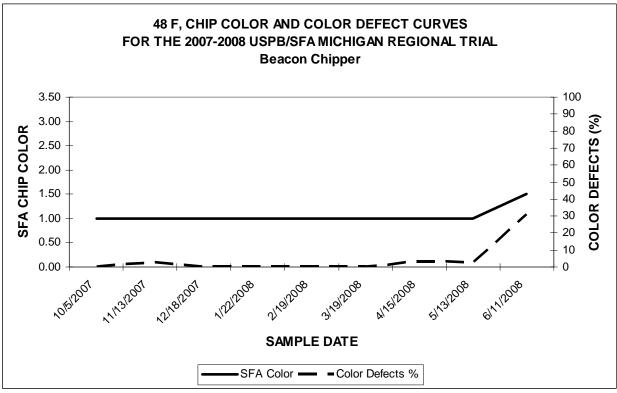

Samples removed from 48 °F storage and processed by Herr Foods Inc., Nottingham, PA on March 26, 2008.

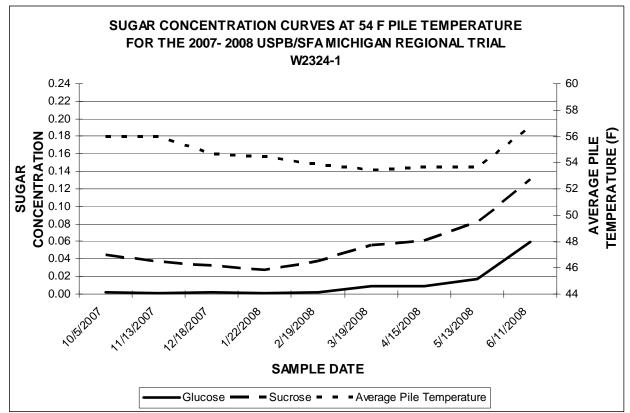
Chip defects are included in Agtron and SFA samples.

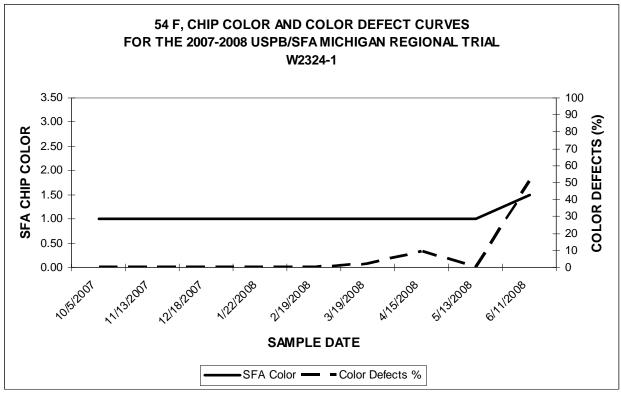

² SFA Color: 1 = lightest, 5 = darkest

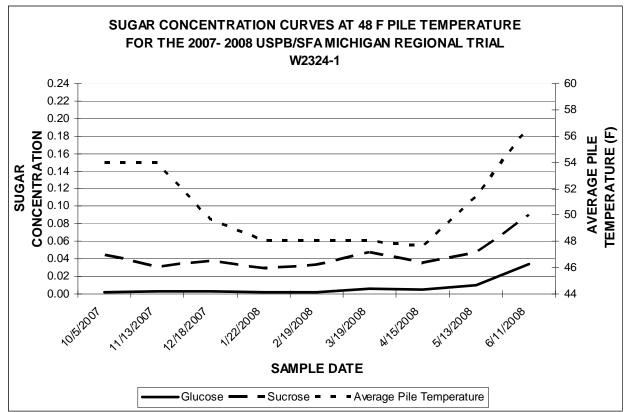
Percent Chip Defects are a percentage by weight of the total sample; comprised of undesirable color, greening, internal defects and external defects.

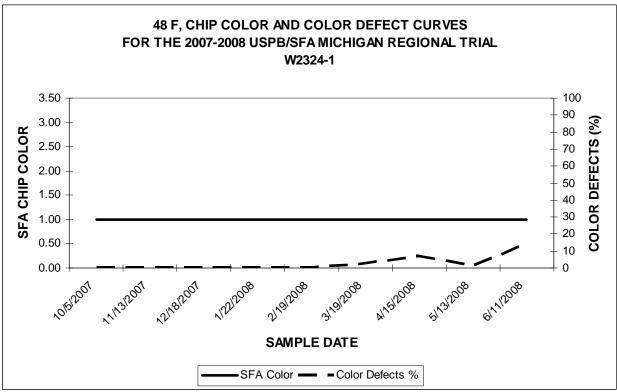


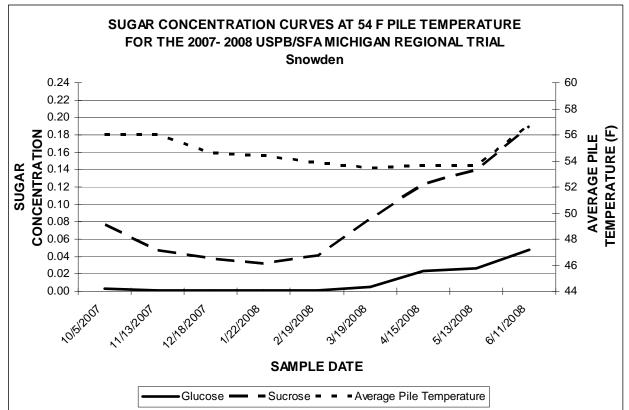
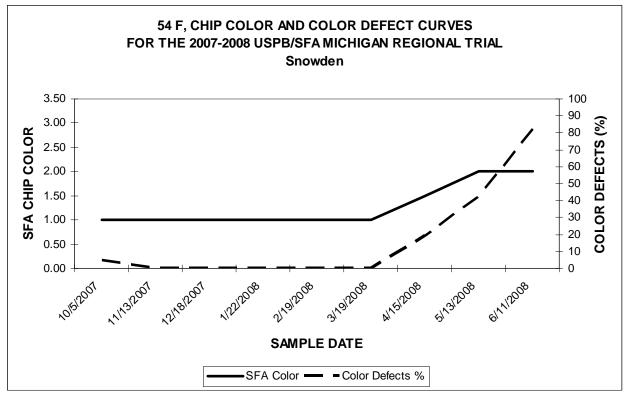
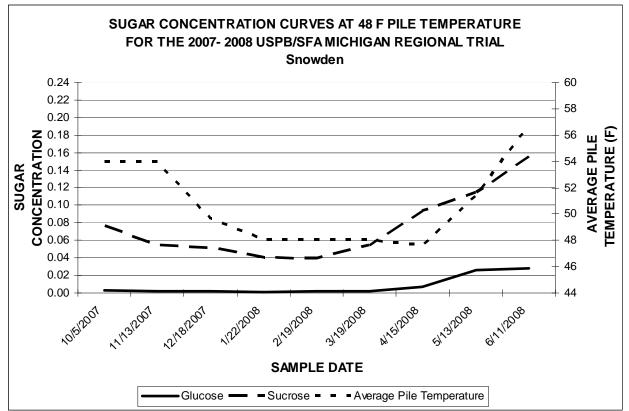


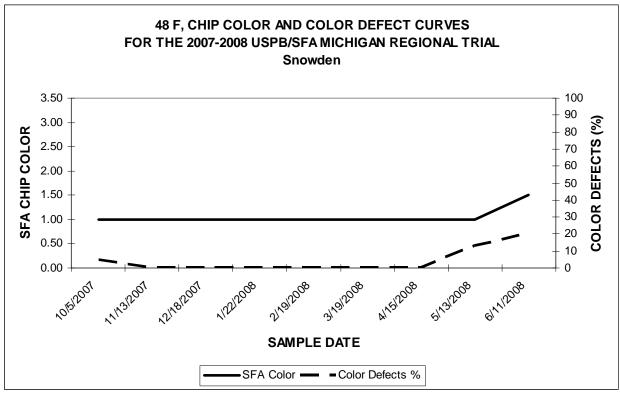


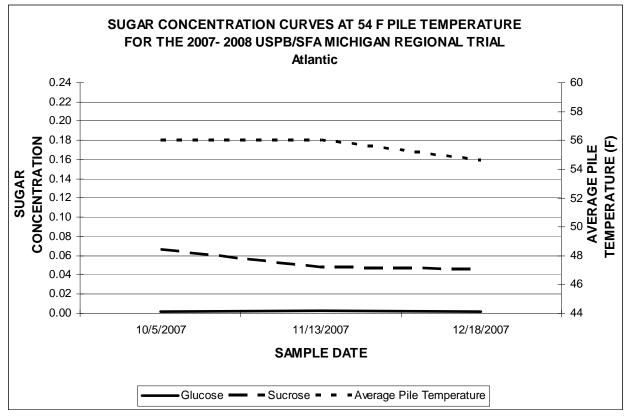
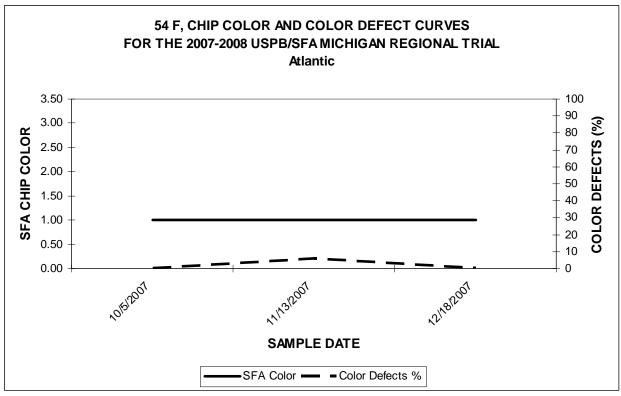
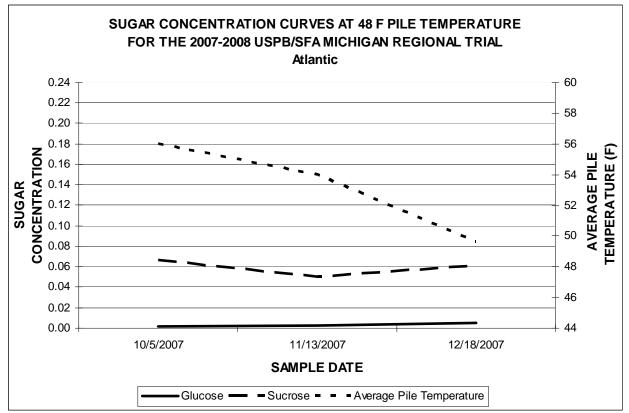


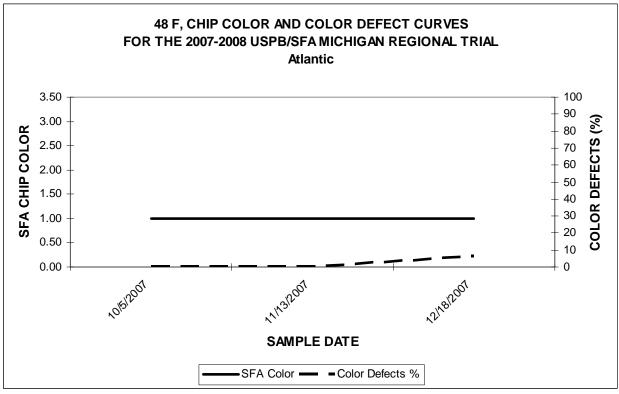


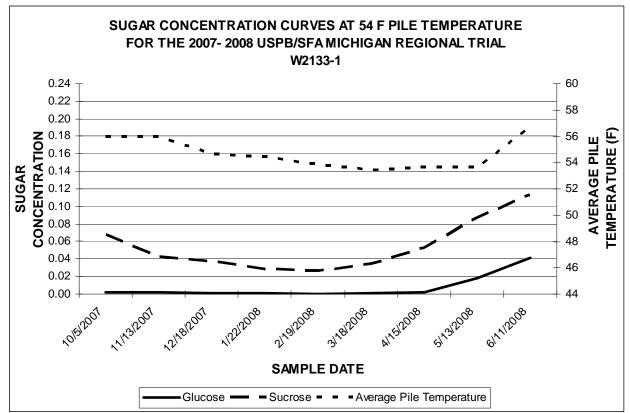


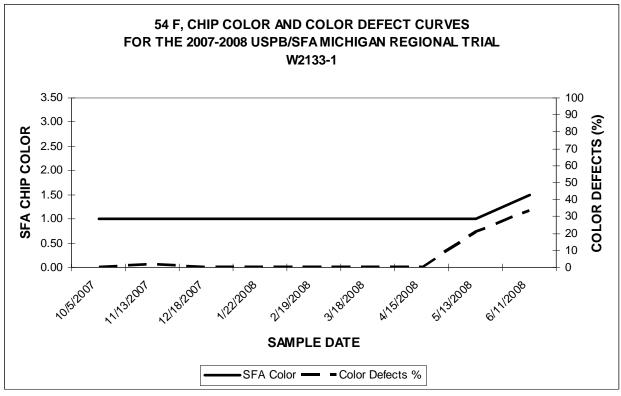




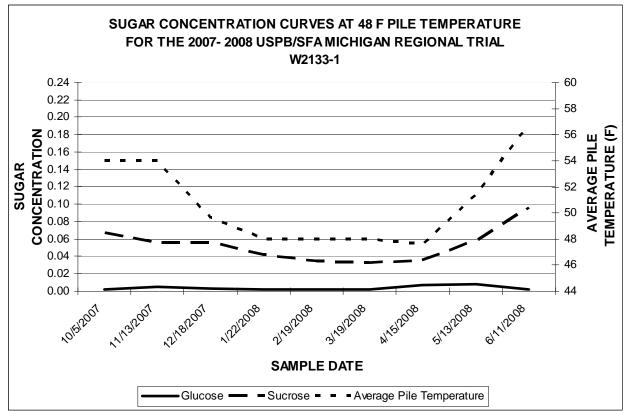

Table12.

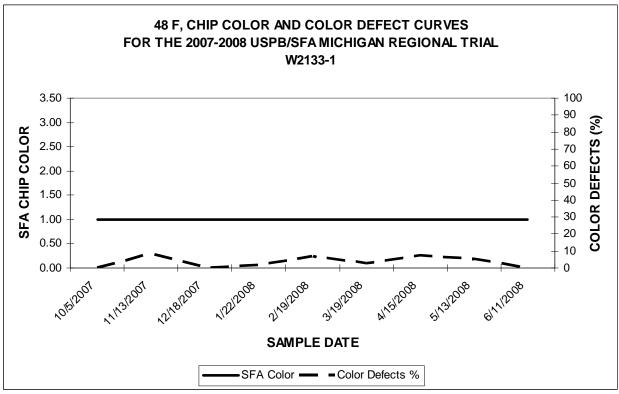




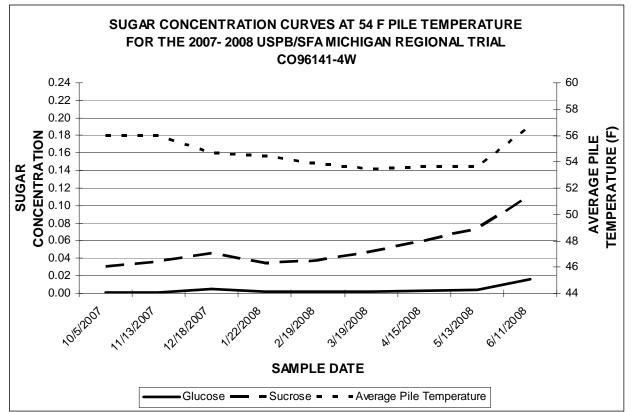
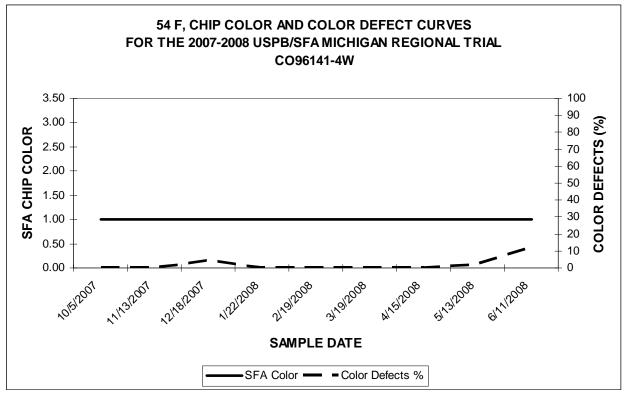
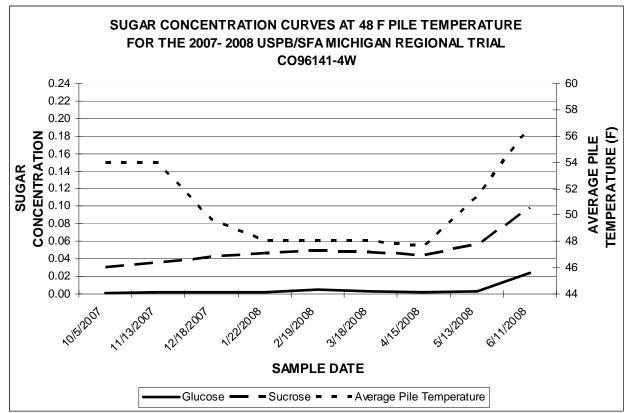

Table 16.

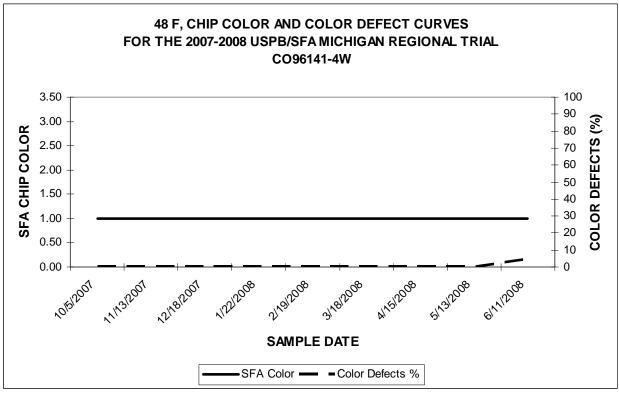









Table24.

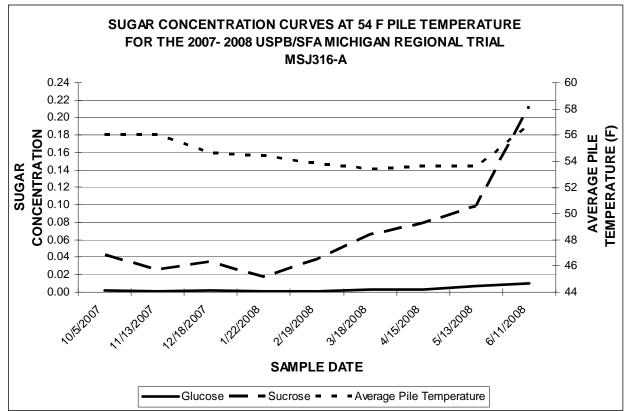
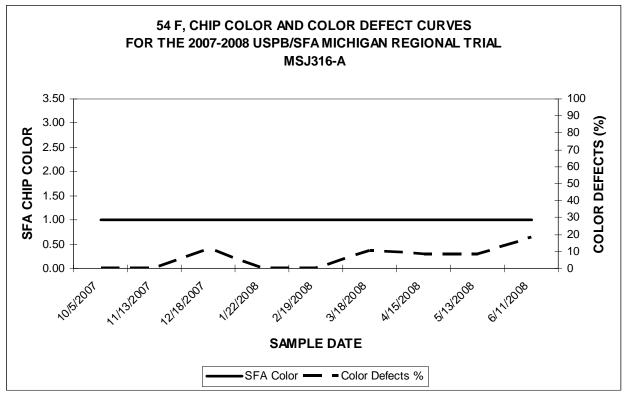
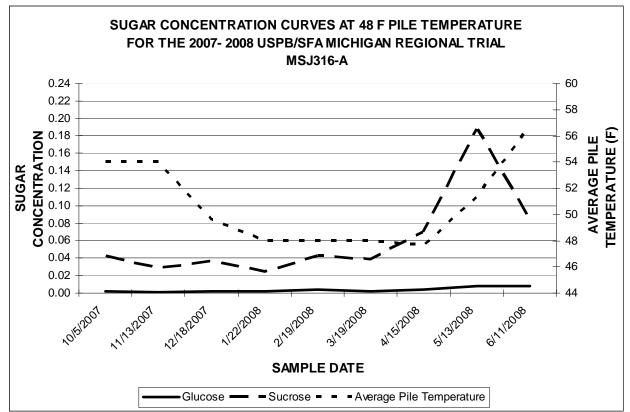
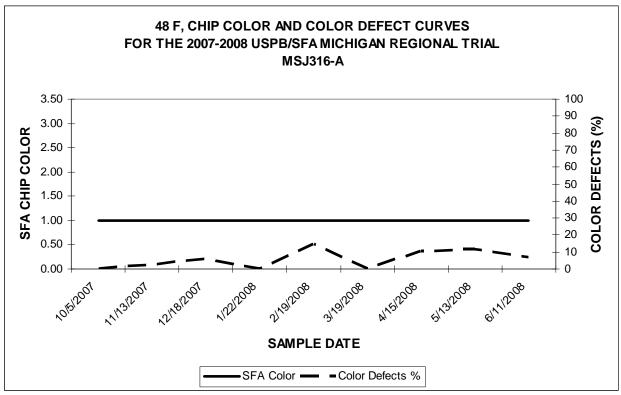
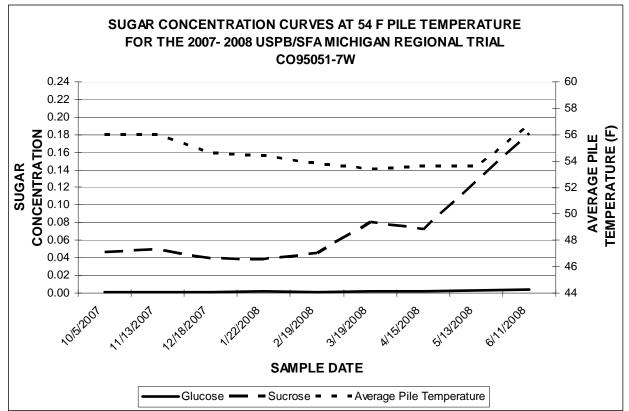
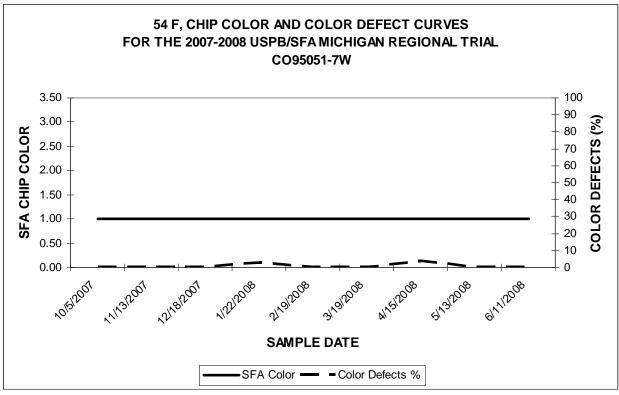
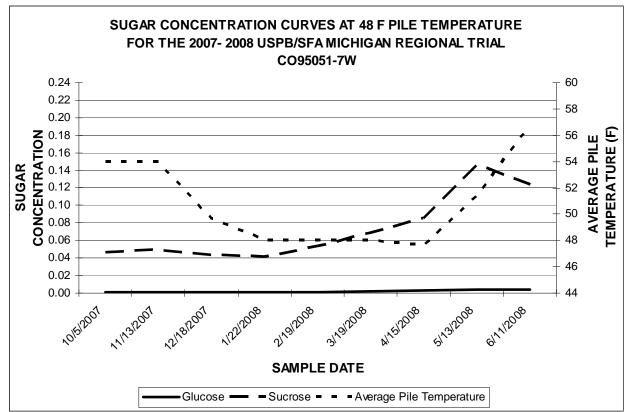
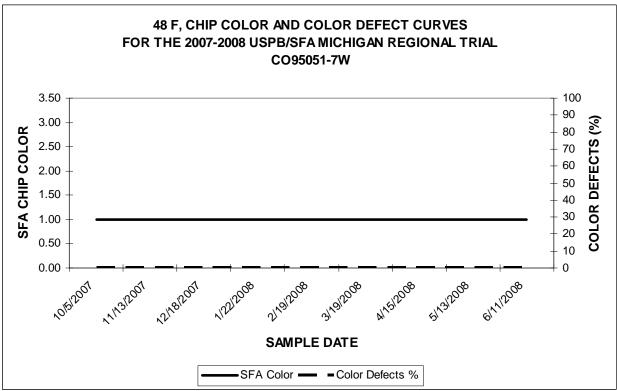



Table 28.


Table 30.





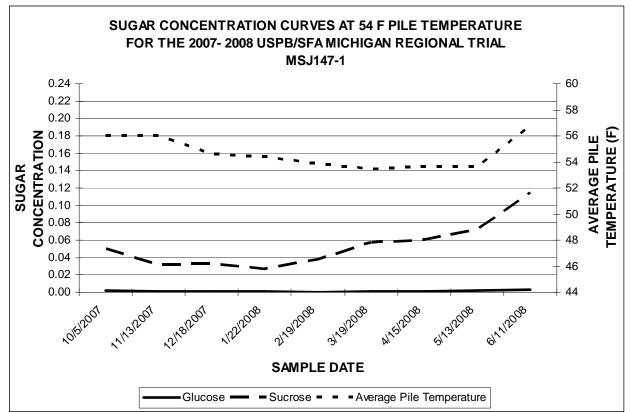
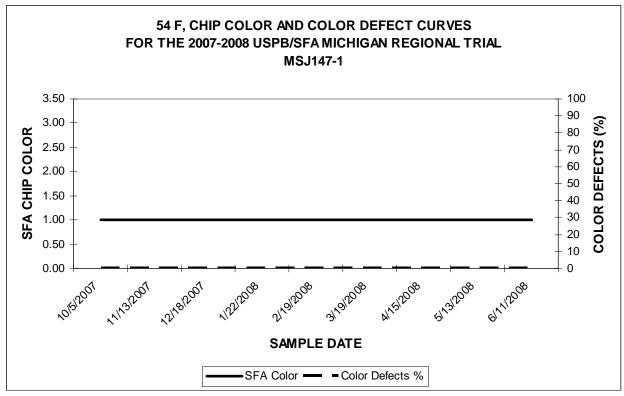



Table 36.

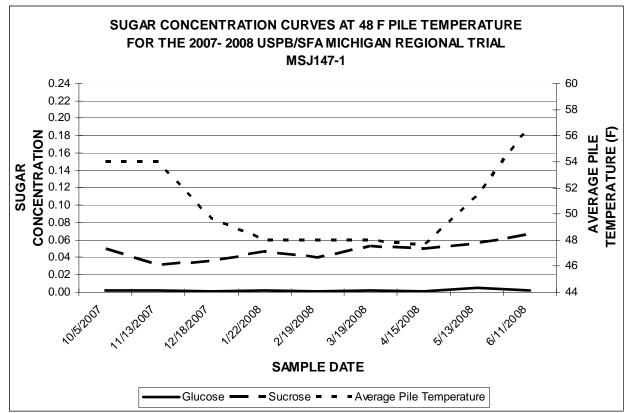
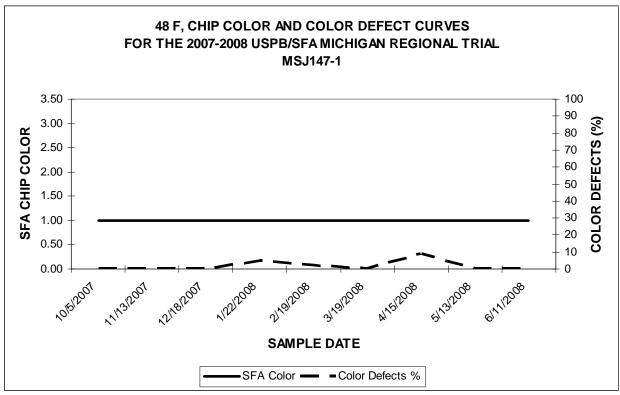



Table 38.

Table 1. 2007 S	nack Foo	d Trial va	rieties st	orage info	ormation.	1			
		А	verage sp	orout leng	th in inche	s		Chip	Data
		15-Jan-08		21-F	eb-08	15-	Mar-08	2/1/2	008 *
Entry	45°F	55⁰F *	notes	45°F	notes	45°F	notes	Agtron	SG
CO95051-7W	1.0	8.3		1.4	b	4.2		41	1.085
CO96141-4W	1.5	6.7		2.2		10.7	cd	48	1.080
Atlantic	1.0	11.3	bc	1.8		3.3	cd	42	1.077
W2133-1	0.8	6.0		0.9	d	2.8	b	44	1.079
Snowden	0.8	11.5	bc	2.6	d	3.8	b	45	1.082
Beacon Chipper	2.3	11.0	bc	3.5	b	5.7		47	1.080
W2324-1	3.3	27.3	bc	5.8	b	8.0	bd	40	1.088
MSJ147-1	0.5	6.8		0.8		1.7	bd	46	1.085
MSJ 316-A	0.0	4.2		1.3	d	1.6	cd	49	1.073

Pennsylvania Regional Trial

Notes:

55°F storage terminated due to excessive sprout length after January 15, 2008.

* Agtron rating and Specific Gravity provided by Snyder of Berlin.

a = samples less than 0.5" were reported as 0.5"

b = minor tuber shrinkage

c = major tuber shrinkage

d = air roots

Chipping 2007 trial from pre-harvest, harvest and 45F & 50F Storage

				HARVE 21/2007						HARVE 28/200	-	
VARIETY	INTERNALS SPECIFIC CC AGT SUCROSE GLUCOSE INTERNALS SPECIFIC CC AGT SUCROSE GRAVITY (ma/a) (ma/a)									GLUCOSE		
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC	2 HH	1.1016	1	68	3.6346	0.0394	1 HH	1.1040	1	70	2.0671	0.0083
BEACON CHIPPER		1.0836	1	72	2.5667	0.0481		1.0923	1	72	1.5354	0.0138
CO 95051-7W		1.0918	1	69	0.8232	0.0110		1.0979	1	73	0.9497	0.0041
CO 96141-4W		1.0813	1	72	0.7636	0.0138		1.0903	1	71	0.6637	0.0028
MSJ 147-1		1.0913	1	72	0.6123	0.0142		1.0922	1	72	0.8126	0.0032
MSJ 316- A		1.0825	1	69	1.7463	0.0147		1.0886	1	69	1.1119	0.0078
SNOWDEN		1.0862	1	69	1.6317	0.0197		1.0901	1	71	0.8883	0.0078
W 2133-1		1.0863	1	66	4.6063	0.0669		1.0935	1	70	1.7463	0.0064
W 2324-1		1.0841	2	64	3.6804	0.0724		1.0890	1	66	1.8333	0.0587

				HARVE /4/2007						RVES	-	
VARIETY	INTERNALS	SPECIFIC GRAVITY	cc	AGT	SUCROSE (mg/g)	GLUCOSE (mg/g)	INTERNALS	SPECIFIC GRAVITY	СС	AGT	SUCROSE (mg/g)	GLUCOSE (mg/g)
ATLANTIC		1.1095	2	64	0.5963	0.0050	1 HH	1.1042	2	61	2.1863	0.1595
BEACON CHIPPER		1.0945	1	69	1.0001	0.0193		1.0921	1	68	1.4804	0.0706
CO 95051-7W		1.0971	1	69	0.4533	0.0069		1.1065	1	69	1.5858	0.0303
CO 96141-4W		1.0968	1	68	0.3887	0.0073		1.0956	1	67	1.0244	0.0303
MSJ 147-1		1.1069	1	69	0.4735	0.0156		1.1019	1	69	0.8754	0.0096
MSJ 316- A		1.0933	1	66	0.6082	0.0147		1.0969	2	61	3.4421	0.1370
SNOWDEN	1 HH	1.1000	1	70	0.7714	0.0078		1.0973	2	64	1.5171	0.1682
W 2133-1	2 HH	1.0943	1	67	0.8850	0.0083		1.1007	1	67	1.7233	0.0999
W 2324-1		1.1036	1	67	0.4285	0.0220		1.0987	2	58	1.1284	0.0995

Red River Valley Regional Trial Chipping 2007 trial from pre-harvest, harvest and 45F & 50F Storage

					ONE	MONTH STO	ORAGE - 1	0/29/07				
			50F	STOR	AGE				45F	STOR	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	СС	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC	3 HH	1.0894	3	46	1.5767	1.0138	1 HH	1.1046	4	43	2.5942	1.4483
BEACON CHIPPER		1.0882	2	55	2.0258	.6655		1.0930	2	55	2.2046	0.7370
CO 95051-7W	1BC	1.1098	2	56	1.7233	.2920	1VD	1.1049	3	53	2.0854	0.3016
CO 96141-4W		1.0839	2	60	1.0546	.2778		1.0953	2	58	1.8425	0.4405
MSJ 147-1		1.0909	1	66	1.4713	.0536	2HH	1.1022	2	64	2.0763	0.0784
MSJ 316- A		1.0893	3	46	2.3375	.9671		1.0954	3	48	3.4054	0.8012
SNOWDEN	1 HH	1.0935	3	52	1.5308	.2053		1.0969	2	55	1.8288	0.6903
W 2133-1		1.0882	3	51	1.3979	.6848		1.0919	3	52	1.8838	0.8786
W 2324-1		1.0868	2	57	1.0262	.2324		1.0970	2	55	1.5721	0.6320

					TWO	MONTH ST	ORAGE - 1	1/26/07				
			50F	STOR	AGE				45F	STOR	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	СС	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC	2HH	1.0948	2	59	1.3947	0.7549	4HH	1.0909	3	49	2.8096	1.2274
BEACON CHIPPER		1.0885	2	63	1.2183	0.4973	2HH 1BC	1.0856	2	59	2.7546	0.7278
CO 95051-7W		1.1009	1	67	1.1500	0.0399		1.0851	2	59	2.8371	0.3277
CO 96141-4W		1.0857	1	68	0.7874	0.2058		1.0883	2	58	1.8792	0.4070
MSJ 147-1		1.0992	1	68	0.7682	0.0124		1.0949	1	69	1.6225	0.0752
MSJ 316- A		1.0969	2	56	1.2398	0.4134		1.0913	4	43	2.1221	0.7159
SNOWDEN	1HH	1.0957	1	67	1.2714	0.1966		1.0901	2	58	1.2247	0.2548
W 2133-1		1.0924	2	60	1.0537	0.2507		1.0956	3	50	1.3814	0.7893
W 2324-1		1.0993	2	61	0.9153	0.1632		1.0930	2	55	1.0010	0.3676

Chipping 2007 trial from pre-harvest, harvest and 45F & 50F Storage

					THRE	E MONTH S	FORAGE -	12/26/07				
			50F	STOR	AGE				45F	STOR	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC		1.0884	2	59	1.1124	0.8782	2HH	1.0800	2	58	2.6858	1.9983
BEACON CHIPPER		1.0874	2	64	0.5518	0.1613		1.0897	2	57	2.7317	0.8291
CO 95051-7W		1.1072	1	69	1.3099	0.0490		1.0950	1	67	1.3924	0.1769
CO 96141-4W		1.0875	1	69	0.5321	0.2085		1.0847	2	58	1.6683	0.7842
MSJ 147-1	1HH	1.0918	1	70	1.0473	0.0472		1.0899	1	73	1.3759	0.0578
MSJ 316- A		1.0863	2	59	0.6518	0.1325		1.0911	3	54	2.4979	1.3933
SNOWDEN	2HH	1.0873	1	70	0.5867	0.0170		1.0967	1	66	1.1330	0.3254
W 2133-1		1.0886	2	64	0.5683	0.0981	1BC	1.0888	2	61	1.0024	0.7535
W 2324-1		1.0822	1	69	0.4033	0.0454		1.0875	2	62	0.6545	0.4721

					FOU	R MONTH ST	FORAGE -	1/29/08				
			50F	STOR/	AGE				45F	STOR/	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	СС	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC	1 HH	1.0885	2	60	1.3113	0.3442		1.0877	2	57	1.4300	0.7957
BEACON CHIPPER		1.0851	1	67	0.4299	0.0633		1.0858	2	56	1.9296	0.5990
CO 95051-7W		1.0892	1	65	0.7833	0.0252		1.0948	1	65	1.5079	0.1357
CO 96141-4W		1.0843	1	67	0.5450	0.0660		1.0851	2	56	2.6996	0.6495
MSJ 147-1		1.0864	1	68	0.6550	0.0289		1.0960	1	66	0.9740	0.0307
MSJ 316- A		1.0816	1	65	0.4524	0.1169		1.0816	3	51	1.3700	0.8800
SNOWDEN	1 HH	1.0863	1	67	0.5587	0.0183		1.0913	1	53	1.2696	0.3561
W 2133-1		1.0821	1	67	0.4295	0.0197		1.0821	1	65	0.8003	0.3085
W 2324-1		1.0875	1	68	0.5147	0.2255		1.0855	2	58	0.6371	0.3323

Red River Valley Regional Trial Chipping 2007 trial from pre-harvest, harvest and 45F & 50F Storage

					FIVE	E MONTH ST	ORAGE - 2	2/21/08				
			50F	STOR	AGE				45F	STOR	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	СС	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC		1.0816	1	65	0.9891	0.0871	2HH	1.0917	2	56	1.7554	0.6430
BEACON CHIPPER		1.0890	1	67	0.6843	0.0385		1.0911	2	59	1.5446	0.3227
CO 95051-7W		1.0892	2	64	1.0652	0.0124		1.0983	1	66	1.8333	0.0628
CO 96141-4W		1.0827	1	68	0.6788	0.0600		1.0912	2	60	2.1863	0.5161
MSJ 147-1		1.0983	1	68	0.7865	0.0220		1.0982	1	65	1.0890	0.0468
MSJ 316- A		1.0909	1	65	0.5688	0.0541		1.0892	2	57	2.0579	0.9029
SNOWDEN		1.0929	1	69	0.6573	0.0142		1.0992	1	67	1.6638	0.3988
W 2133-1	1HH	1.0914	1	68	0.4281	0.0165		1.0862	1	65	1.1110	0.1352
W 2324-1		1.0874	1	68	0.4767	0.0403		1.0810	2	59	0.8287	0.1265

					SIX	MONTH ST	ORAGE - 3	/27/08				
			50F	STOR	AGE				45F	STOR	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	СС	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC		1.1017	2	59	0.9002	0.0248	1HH	1.0848	4	40	1.9388	0.5509
BEACON CHIPPER	1HH	1.0886	2	64	0.2800	0.0156		1.0838	2	53	1.2535	0.3048
CO 95051-7W		1.0973	2	60	0.9492	0.0083		1.1050	2	57	1.3979	0.0591
CO 96141-4W		1.0913	2	63	0.3978	0.0399		1.0887	3	49	1.1981	0.5376
MSJ 147-1		1.0985	2	56	0.9066	0.0151		1.0985	2	50	1.2678	0.0234
MSJ 316- A		1.0973	2	57	0.7466	0.0330	1HH	1.0929	3	50	0.9831	0.7544
SNOWDEN		1.1016	2	62	0.3900	0.0133		1.0954	2	62	0.9176	0.1027
W 2133-1		1.0832	2	57	0.1985	0.0289		1.0918	2	55	0.8337	0.0339
W 2324-1		1.0913	2	59	0.3112	0.0413	1HH	1.0859	3	52	0.4551	0.1247

Chipping 2007 trial from pre-harvest, harvest and 45F & 50F Storage

					SEVE	EN MONTH S	TORAGE -	4/28/08				
			50F	STOR	AGE				45F	STOR	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC		1.1103	2	61	1.0739	0.0697	1HH	1.0836	3	45	2.6354	0.6334
BEACON CHIPPER		1.0887	2	60	0.6078	0.0225		1.0881	5	33	1.5171	0.9928
CO 95051-7W		1.1017	2	60	0.9391	0.0069		1.1069	4	43	1.8013	0.3800
CO 96141-4W		1.0903	2	60	0.4235	0.0165		1.1022	4	35	1.8425	0.9721
MSJ 147-1		1.1000	2	60	0.6655	0.0041		1.0971	3	48	1.9250	0.4391
MSJ 316- A		1.0925	2	63	0.6692	0.0170		1.0887	3	53	1.3837	0.8644
SNOWDEN		1.0933	2	57	0.8470	0.1499		1.0935	4	44	1.0913	0.3172
W 2133-1	1HH	1.0824	2	58	0.3300	0.0518		1.0972	3	47	0.4790	0.1824
W 2324-1		1.0954	2	59	0.3130	0.0078		1.0981	3	45	0.4771	0.4730

					EIGI	HT MONTH S	TORAGE -	6/3/08				
			50F	STOR	AGE				45F	STOR	AGE	
VARIETY	INTERNALS	SPECIFIC	CC	AGT	SUCROSE	GLUCOSE	INTERNALS	SPECIFIC	СС	AGT	SUCROSE	GLUCOSE
		GRAVITY			(mg/g)	(mg/g)		GRAVITY			(mg/g)	(mg/g)
ATLANTIC		1.0973	2	55	1.3173	0.0710		1.1010			3.0388	1.4529
BEACON CHIPPER		1.0833	2	63	0.9556	0.0431		1.0921	3	47	6.2563	0.8663
CO 95051-7W		1.1035	2	57	3.1808	0.0211		1.1067			3.7492	0.0802
CO 96141-4W		1.0950	2	62	1.5721	0.4336		1.0832	3	45	1.6729	0.6779
MSJ 147-1		1.0930	2	59	2.1221	0.1503		1.1022	2	59	1.5171	0.0261
MSJ 316- A		1.0904	2	58	1.0005	0.0417		1.0852	3	45	1.1183	0.2828
SNOWDEN		1.0845	2	55	1.9158	0.7732	1HH	1.0922			1.9904	0.3912
W 2133-1		1.0830	2	58	0.6256	0.0069		1.0878	2	55	0.6843	0.0160
W 2324-1		1.0859	2	55	0.5578	0.0756		1.0963			0.7104	0.4826

Pre-Harvest and Harvest Chip Information 2008 Red River Valley Regional Chip Trial Hoople, North Dakota

		Pre-Ha	arvest Sa	ample ¹			Harv	vest San	nple²	
Variety/Clone	S.G. ³	C.C.⁴	AGT⁵	Suc ⁶	Gluc ⁷	S.G. ³	C.C.⁴	AGT⁵	Suc ⁶	Gluc ⁷
AF2291-10	1.0802	1	67	1.2073	0.0096	1.0977	3	50	2.6996	2.0579
ATLANTIC	1.1052	2	57	0.8663	0.0092	1.1043	4	42	1.1477	1.9342
BEACON CHIPPER	1.0878	1	69	1.271	0.0138	1.0911	2	61	0.9588	0.3470
CO95051-7W	1.0894	2	63	1.9708	0.055	1.0969	2	55	1.0794	0.2970
CO96141-4W	1.0809	1	74	0.7521	0.0096	1.0943	2	64	1.9388	0.3708
CO97043-14W	1.0838	1	66	0.7086	0.0078	1.0930	1	68	1.3933	0.3538
CO97065-7W	1.0857	1	65	0.3914	0.006	1.0959	2	64	1.4896	0.2512
MSJ036-A	1.0941	2	60	1.4942	0.0078	1.0933	3	51	1.3507	1.1729
MSJ147-1	1.0835	2	62	0.7595	0.0119	1.0946	1	67	1.7600	0.1994
ND7519-1	1.0946	1	69	0.9863	0.0078	1.0992	1	65	1.2820	0.1962
NY138	1.0852	1	70	0.6013	0.0064	1.0856	2	62	1.2045	0.4359
NY139	1.0841	1	68	0.9341	0.0087	1.0938	2	62	1.4071	0.2521
SNOWDEN	1.0911	1	65	0.9396	0.016	1.0943	2	48	1.8104	0.9107
W2310-3	1.1005	1	65	0.402	0.0128	1.0942	1	65	0.9932	0.1311
W2324-1	1.0985	1	65	1.3562	0.0339	1.0957	3	53	1.0991	1.3979
W2717-5	1.1005	2	56	0.8484	0.0087	1.1070	2	62	1.4942	0.0788

¹September 9, 2008. ²September 26, 2008. ³S.P. = Specific Gravity. ⁴Chip Color $\{1(light) - 5 (dark)\}$.

October 2008 (1 month) Storage Chip Information 2008 Red River Valley Regional Chip Trial Hoople, North Dakota

		50°F					45°F						
Variety/Clone	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷			
AF2291-10	1.0954	3	53	1.8563	0.5711	1.0971	3	47	3.5108	0.8562			
ATLANTIC	1.0995	3	45	1.1426	2.1954	1.1027	3	45	2.0121	1.9983			
BEACON CHIPPER	1.0897	2	64	1.0216	0.2599	1.0925	2	55	2.4933	0.5784			
CO95051-7W	1.1012	2	61	0.9391	0.2910	1.0952	2	52	2.1679	0.8704			
CO96141-4W	1.0929	2	64	1.3296	0.1334	1.0861	2	58	2.1129	0.4725			
CO97043-14W	1.0892	1	67	0.8557	0.0523	1.0900	1	65	2.5529	0.3383			
CO97065-7W	1.0949	1	66	2.3421	0.2759	1.0968	2	57	5.1700	0.2764			
MSJ036-A	1.0919	3	53	1.0436	0.8291	1.0879	3	45	1.5629	1.2095			
MSJ147-1	1.0942	2	62	1.3173	0.1123	1.0930	2	58	2.1450	0.2558			
ND7519-1	1.1024	1	66	1.2898	0.1678	1.1030	2	61	1.7738	0.1416			
NY138	1.0866	2	63	1.1949	0.2718	1.0885	2	57	2.4658	0.3314			
NY139	1.098	2	64	1.5354	0.1948	1.0952	3	52	2.3971	0.6018			
SNOWDEN	1.0959	2	55	1.1220	0.4208	1.0952	3	48	1.9342	1.7463			
W2310-3	1.1026	1	67	0.6247	0.0765	1.1020	2	58	1.0670	0.3841			
W2324-1	1.1002	2	57	0.9144	0.8887	1.0987	4	43	1.5400	1.2824			
W2717-5	1.1015	2	62	1.2338	0.0422	1.1054	2	64	1.7004	0.0633			

¹September 9, 2008. ²September 26, 2008. ³S.P. = Specific Gravity. ⁴Chip Color $\{1(light) - 5 (dark)\}$.

November 2008 (2 month) Storage Chip Information 2008 Red River Valley Regional Chip Trial Hoople, North Dakota

	50°F					45°F					
Variety/Clone	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷	
AF2291-10	1.0981	3	50	1.7004	0.6577	1.0951	4	44	3.6025	0.6765	
ATLANTIC	1.0994	3	46	0.9510	1.0569	1.0980	4	41	2.0167	1.3415	
BEACON CHIPPER	1.0909	2	61	0.8328	0.2250	1.0922	3	53	1.9938	0.4111	
CO95051-7W	1.1053	2	63	1.0005	0.1742	1.1010	2	55	2.8692	0.6903	
CO96141-4W	1.0955	2	63	1.2100	0.4203	1.1041	3	54	2.9563	0.5248	
CO97043-14W	1.0983	1	67	1.0216	0.0582	1.0924	3	52	5.4863	0.4171	
CO97065-7W	1.0918	2	59	1.7600	0.1930	1.0946	4	43	8.4838	1.8792	
MSJ036-A	1.0982	2	56	0.8800	0.6041	1.0921	3	48	1.4483	1.1293	
MSJ147-1	1.0974	2	64	0.8754	0.0591	1.0972	2	60	1.8929	0.3548	
ND7519-1	1.0966	1	67	0.7283	0.0307	1.1030	2	60	1.5308	0.2548	
NY138	1.0880	2	63	1.1889	0.2402	1.0898	3	49	5.2433	0.9226	
NY139	1.1020	2	63	1.4483	0.2333	1.0974	3	46	2.5804	0.7219	
SNOWDEN	1.0995	2	61	0.8241	0.3236	1.0963	4	41	1.9113	1.6546	
W2310-3	1.1037	2	59	0.5954	0.1572	1.1055	2	63	1.1798	0.0770	
W2324-1	1.1033	3	54	0.9199	0.7214	1.1053	4	40	1.4208	1.4025	
W2717-5	1.1087	1	67	1.5354	0.0312	1.1034	2	61	3.5246	0.2177	

¹September 9, 2008. ²September 26, 2008. ³S.P. = Specific Gravity. ⁴Chip Color $\{1(light) - 5 (dark)\}$.

December 2008 (3 month) Storage Chip Information 2008 Red River Valley Regional Chip Trial Hoople, North Dakota

		50°F						45°F					
Variety/Clone	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷			
AF2291-10	1.0992	3	54	1.6500	0.6838	1.1030	3	46	3.3229	1.0578			
ATLANTIC	1.0923	3	52	1.0711	1.0739	1.1023	3	47	1.8150	1.9067			
BEACON CHIPPER	1.0920	1	64	0.8768	0.1160	1.0921	3	50	1.6821	0.5660			
CO95051-7W	1.1073	1	66	1.0115	0.1994	1.0930	2	62	1.7554	0.2470			
CO96141-4W	1.0997	1	65	0.7480	0.1132	1.0991	2	60	1.7829	0.4556			
CO97043-14W	1.0923	1	70	0.7182	0.0289	1.0956	2	60	3.6438	0.3777			
CO97065-7W	1.0923	1	65	0.6527	0.1600	1.0868	2	53	3.6529	0.6939			
MSJ036-A	1.0936	2	58	0.8846	0.4400	1.0939	3	51	1.6546	1.1046			
MSJ147-1	1.1074	1	66	0.9996	0.1105	1.0990	1	66	1.1944	0.0999			
ND7519-1	1.1047	1	70	0.7141	0.0234	1.1030	1	67	1.2513	0.1723			
NY138	1.0925	1	68	0.8901	0.1270	1.0857	2	57	1.7463	0.4432			
NY139	1.1031	1	66	1.0464	0.0958	1.1053	2	62	2.0396	0.3795			
SNOWDEN	1.1011	2	63	0.8140	0.1540	1.0993	3	47	1.8517	1.4804			
W2310-3	1.0872	1	71	0.4803	0.0101	1.1032	1	66	0.8635	0.0518			
W2324-1	1.1032	2	59	1.4163	0.5280	1.1071	4	44	0.8750	1.0789			
W2717-5	1.1087	1	_67	0.9323	0.0197	1.1076	1	64	2.0992	0.0921			

¹September 9, 2008. ²September 26, 2008. ³S.P. = Specific Gravity. ⁴Chip Color {1(light) – 5 (dark)}.

January 2009 (4 month) Storage Chip Information 2008 Red River Valley Regional Chip Trial Hoople, North Dakota

	50°F					45°F				
Variety/Clone	S.G. ³	C.C.⁴	AGT⁵	Suc ⁶	Gluc ⁷	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷
AF2291-10	1.0780	2	55	1.6225	0.3905	1.0952	3	47	2.6492	1.2971
ATLANTIC	1.0852	3	52	0.9093	0.8580	1.0911	3	46	1.7233	1.4529
BEACON CHIPPER	1.0997	2	60	0.8461	0.2191	1.0883	2	55	1.4300	0.7100
CO95051-7W	1.0855	1	67	0.9153	0.0289	1.1045	2	62	1.1248	0.1150
CO96141-4W	1.1000	2	63	0.9139	0.2388	1.1006	2	56	2.7042	1.0198
CO97043-14W	1.0982	1	68	0.7783	0.0935	1.0943	3	53	2.3650	0.5321
CO97065-7W	1.0977	1	66	0.6591	0.1201	1.1017	3	50	1.7371	0.4693
MSJ036-A	1.0947	2	60	0.9863	0.6142	1.0911	3	49	1.5538	1.4483
MSJ147-1	1.1000	1	66	1.1449	0.0394	1.0961	2	63	1.5767	0.2897
ND7519-1	1.1071	1	66	0.8374	0.0202	1.1055	2	63	0.8525	0.0536
NY138	1.0923	2	64	0.9213	0.0958	1.0899	2	57	1.0372	0.3153
NY139	1.0984	1	66	0.9281	0.0284	1.0980	2	58	1.3521	0.4203
SNOWDEN	1.0976	2	61	0.7398	0.1155	1.0964	3	50	1.0326	0.6738
W2310-3	1.0996	2	64	0.5651	0.0885	1.1033	2	59	1.1032	0.1719
W2324-1	1.1004	2	59	1.0138	0.2860	1.0886	2	46	1.1055	1.8150
W2717-5	1.1043	1	<u>,</u> 65	1.0111	0.0312	1.1097	2	61	2.3788	0.0999

¹September 9, 2008. ²September 26, 2008. ³S.P. = Specific Gravity. ⁴Chip Color {1(light) – 5 (dark)}.

February 2009 (5 month) Storage Chip Information 2008 Red River Valley Regional Chip Trial Hoople, North Dakota

	50°F							45°F					
Variety/Clone	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷	S.G. ³	C.C. ⁴	AGT⁵	Suc ⁶	Gluc ⁷			
AF2291-10	1.1017	2	58	1.3026	0.2810	1.0942	3	47	1.8975	0.8910			
ATLANTIC	1.1023	2	53	1.0487	0.8534	1.0878	3	48	1.5583	0.9602			
BEACON CHIPPER	1.0939	2	62	0.7118	0.0234	1.0872	2	55	1.2526	0.4130			
CO95051-7W	1.1039	2	62	0.8828	0.0362	1.1010	2	58	0.9327	0.1004			
CO96141-4W	1.0923	2	62	1.0569	0.1801	1.0938	3	54	2.5438	0.7517			
CO97043-14W	1.0981	2	64	0.9002	0.0335	1.0980	2	55	1.5492	0.6637			
CO97065-7W	1.0622	2	62	0.5725	0.0692	1.0905	2	55	0.9776	0.6834			
MSJ036-A	1.0947	3	54	0.9455	0.5143	1.0948	3	49	1.1990	0.7013			
MSJ147-1	1.1058	2	63	1.1752	0.0303	1.0956	2	61	0.7650	0.1838			
ND7519-1	1.0994	2	63	0.8672	0.0179	1.1083	2	62	1.0125	0.1022			
NY138	1.0894	2	62	0.7769	0.0371	1.0837	2	58	0.9520	0.2993			
NY139	1.0974	2	60	0.9428	0.0138	1.0925	2	62	1.2623	0.0564			
SNOWDEN	1.0996	2	59	0.7544	0.0490	1.0927	3	54	0.9895	0.4895			
W2310-3	1.0974	2	63	0.6389	0.0655	1.0825	2	56	0.9730	0.1975			
W2324-1	1.1062	2	56	0.8333	0.2402	1.1010	3	50	0.6316	1.2513			
W2717-5	1.0995	2	59	1.1128	0.0289	1.1029	2	61	1.0720	0.0545			

¹September 9, 2008. ²September 26, 2008. ³S.P. = Specific Gravity. ⁴Chip Color {1(light) – 5 (dark)}.

OUT-OF-STORAGE CHIP QUALITY 2007-2008 WISCONSIN REGIONAL TRIAL

Processing scores by date and storage temperature, 2007-2008 storage season.

Variety	10/11/07	1/15/08			3/25/08			6/10/08		
	55°F	42°F	45°F	48°F	42°F	45°F	48°F	42°F	45°F	48°F
Atlantic	3.0	7.0	7.7	6.3	8.0	6.1	4.4	8.9	7.1	6.4
Beacon Chipper	4.0	4.9	6.4	4.0	6.6	6.3	4.1	7.8	6.3	5.8
CO95051-7W	3.8	3.5	4.7	3.6	4.7	5.0	2.3	7.6	6.9	5.5
CO96141-4W	3.2	5.9	8.1	5.9	7.7	8.1	5.2	7.2	6.8	5.5
MSJ147-1	2.7	2.8	5.6	3.2	2.1	2.0	2.7	4.1	5.7	6.2
MSJ316-A	4.7	7.8	8.4	6.1	7.1	4.4	4.2	6.3	4.8	2.5
Snowden	3.7	2.8	4.5	2.9	5.0	3.1	3.3	7.8	7.2	7.8
W2133-1	3.0	3.5	5.2	2.9	4.6	3.6	2.1	1.8	1.9	4.5
W2324-1	5.0	4.2	6.0	3.8	6.3	4.0	3.5	6.0	5.0	7.3

Scores of 4 or less are considered acceptable color.

Wisconsin Regional Trial Processing Studies – 2008-09

Samples for processing were drawn from plots following grading. Enough 2-13 oz tubers to fill eight plastic crates (35 lbs capacity) were saved for each variety. Samples were moved to the Wisconsin Potato and Vegetable Storage Research Facility and stored at 55°F and 95% relative humidity for four weeks to promote wound healing. Following wound healing each variety was divided into three samples and moved to three lockers for long-term storage. Lockers were set at 55°F initially. Ramping of temperatures down to final set points of 42°F, 45°F, and 48°F was initiated at the rate of 0.1°F per eight hrs. Final set points will be reached in late-November to early-December. An early processing was done on November 4, 2008 when storage temperatures were at 52°F. Ten tubers were selected randomly from each variety and processed into chips. Samples were processed following a one-day warming period at room temperature. Tubers were cut in half lengthwise (along stem end to bud end axis) using a custom-built potato splitter. One-half of the tuber was discarded. Two slices were taken from the remaining half of each tuber using a custom-built slicer. Slices were cut approximately one millimeter thick. The first slice from each tuber half was discarded and the second was used for the processing evaluation. Each slice was rinsed briefly in cold water to remove free starch granules. Excess water was absorbed from the chips using a terry cloth bath towel. The slices were placed in a specially designed wire basket designed to orient them vertically and keep them separated while frying. The slices were fried in cottonseed oil at 365°F for two minutes and 10 seconds. Slices were drained in the frying basket for a short period of time and then placed on paper towels for further draining. Chips were scored visually within one hour after frying. Processed chip samples were evaluated visually and scored on a scale of 1-10 using a color chart devised by potato breeders at the Rhinelander Agricultural Research Station, Rhinelander, WI that parallels the Potato Chip International Institute (PCII) color chart. Scores presented in Table 4 are averages of the 10 chips in each sample. A score of 1 represents the lightest color and 10 the darkest color. Scores of 4 or less are considered acceptable color.

Variety	11/04/2008		1/15/2009			
	52°F	42°F	45°F	48°F		
AF2291-10	3.2	7.2	6.9	6.6		
CO96141-4W	3.3	6.8	6.4	5.3		
W2310-3	2.5	4.1	3.1	2.9		
SNOWDEN	3.7	5.4	4.8	3.2		
CO97043-14W	2.7	7.0	5.3	5.0		
NY139	2.8	6.0	5.0	3.1		
MSJ147-1	2.6	3.4	2.9	3.1		
BEACON CHIPPER	3.8	7.3	4.9	4.6		
CO95051-7W	2.5	3.8	4.3	3.2		
W2324-1	3.1	6.0	5.9	4.5		
W2717-5	2.0	3.3	2.9	2.3		
ND7519-1	2.3	4.1	3.5	2.6		
MSJ036-A	2.7	6.1	5.6	4.4		
ATLANTIC	3.9	7.5	5.9	5.5		
NY138	2.4	5.0	2.9	2.9		
CO97065-7W	3.3	7.3	7.0	6.2		

Table 5. Processing scores by date and storage temperature, 2008

Variety	Sucrose (mg/g fresh wt.)	Glucose (mg/g fresh wt.)	Hunter Score (L-value)
AF2291-10	1.636	0.583	60
CO96141-4W	0.740	0.414	60
W2310-3	0.572	0.066	67
SNOWDEN	0.549	0.161	66
CO97043-14W	1.118	0.439	60
NY139	1.213	0.117	64
MSJ147-1	0.864	0.059	64
BEACON CHIPPER	1.026	0.487	60
CO95051-7W	0.887	0.168	63
W2324-1	0.399	0.223	63
W2717-5	0.637	0.045	67
ND7519-1	0.510	0.016	68
MSJ036-A	0.705	0.412	60
ATLANTIC	1.136	0.692	60
NY138	0.737	0.023	67
CO97065-7W	1.548	1.180	60

Table 6. Processing scores for samples evaluated by Frito-Lay, Inc., 2008

Table 7. Defect scores for samples evaluated by Frito-Lay, Inc.,2008

Variety	Internal Defects (%)	External Defects (%)	Total Defects (%)
	Delects (70)	Delects (70)	Delects (70)
AF2291-10	0	77	77
CO96141-4W	12	28	40
W2310-3	0	26	26
SNOWDEN	0	25	25
CO97043-14W	38	5	43
NY139	0	23	23
MSJ147-1	0	75	75
BEACON CHIPPER	0	46	46
CO95051-7W	0	53	53
W2324-1	6	26	32
W2717-5	0	22	22
ND7519-1	0	10	10
MSJ036-A	0	22	22
ATLANTIC	0	75	75
NY138	0	9	9
CO97065-7W	6	34	40

Table 8. USPB-SFA Chip Trial Entry Summary: 1985 - 2008

Atlantic, 1985-2008 and Snowden, 1988-2008 as Standards

WNC672-2, 1985-1987 WNC521-12, 1985-1986 W879, 1985-1986 W833, 1985 TXA17-1, 1985-1986 A70369-2, 1985-1986 ND860-2, 1985-1986 G670-11, 1985 BR7093-24 (Gemchip), 1986-1988 W848 (Niska), 1986-1987 NY71 (Kanona), 1986-1988 NY81 (Steuben), 1986-1988 NY72 (Allegany), 1987-1989 AF236-1 (Somerset), 1987-1989 MS700-70, 1987-1989 AC80545-1 (Chipeta), 1987-1989 LA01-38 (LaBelle), 1988-1990 MS716-15, 1988-1990 MS700-83 (Spartan Pearl), 1988-1990 W855 (Snowden), 1988-1990 Saginaw Gold, 1988-1990 AF875-16 (Mainechip), 1989-1991 D195-24, 1989 ND2008-2, 1990 Coastal Chip, 1990 CS7232-4, 1990-1992 Andover, 1991-1993 Pike, 1991-1993 NY87 (Reba), 1991 W887, 1991-1993 W870, 1991-1993 A80559-2, 1991-1993 NDA2031-2, 1992-1994 Suncrisp, 1992-1994 B0178-34, 1992-1994 NDO1496-1 (Ivory Crisp), 1993-1995 NY95, 1993 AF875-15, 1994-1996 ND2417-6 (NorValley), 1994-1996

ND2471-8, 1994-1996 NY102 (Monticello), 1994-1995 NY103 (Eva), 1995-1997 BCO894-2, 1995-1997 ATX85404-8, 1996-1998 AF1433-4, 1996-1998 ND2676-10 (Dakota Pearl), 1997-1999 B0564-8 (Harley Blackwell), 1997-1999 B0564-9, 1997-1999 NY115, 1997-1999 W1313, 1999 NY112 (Marcy), 1998-2000 AF1668-60, 1998-2000 MSNT-1, 1998-2000 MSA091-1 (Liberator), 1999-2001 B0766-3, 2000-2002 AF1775-2, 2000-2002 W1431, 2000-2002 NY120, 2000-2002 AF1424-7, 2001-2003 MSG227-2, 2001-2003 W1355-1 (White Pearl), 2001-2003 NDTX4930-5W, 2001-2003 ND2470-27 (Dakota Crisp), 1999, 2003-2004 A91790-13, 2002-2004 MSF099-3, 2002-2004 B1240-1, 2004 W1773-7, 2004 ND5822C-7 (Dakota Diamond), 2003-2005 W1201(Megachip), 2003-2005 AF2211-9, 2004-2006 MSJ461-1, 2004-2006 NY132, 2004-2006 MSJ316-A, 2005-2007 W2133-1, 2005-2007 BEACON CHIPPER, 2006-2008 CO95051-7W, 2006-2008 MSJ147-1, 2006-2008 W2324-1, 2006-2008